Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 16(11): 1647-56, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26032298

RESUMO

Cytosine-rich single-stranded DNA oligonucleotides are able to adopt an i-motif conformation, a four-stranded structure, near a pH of 6. This unique pH-dependent conformational switch is reversible and hence can be controlled by changing the pH. Here, we show that the pH response range of the human telomeric i-motif can be shifted towards more basic pH values by introducing 5-methylcytidines (5-MeC) and towards more acidic pH values by introducing 5-bromocytidines (5-BrC). No thermal destabilisation was observed in these chemically modified i-motif sequences. The time required to attain the new conformation in response to sudden pH changes was slow for all investigated sequences but was found to be ten times faster in the 5-BrC derivative of the i-motif.


Assuntos
DNA de Cadeia Simples/química , Motivos de Nucleotídeos , Oligodesoxirribonucleotídeos/química , 5-Metilcitosina/química , Sequência de Bases , Citosina/análogos & derivados , Citosina/química , DNA de Cadeia Simples/genética , Humanos , Concentração de Íons de Hidrogênio , Cinética , Oligodesoxirribonucleotídeos/genética , Telômero/genética , Temperatura
2.
Nat Nanotechnol ; 10(7): 645-51, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26098226

RESUMO

The concentration of chloride ions in the cytoplasm and subcellular organelles of living cells spans a wide range (5-130 mM), and is tightly regulated by intracellular chloride channels or transporters. Chloride-sensitive protein reporters have been used to study the role of these chloride regulators, but they are limited to a small range of chloride concentrations and are pH-sensitive. Here, we show that a DNA nanodevice can precisely measure the activity and location of subcellular chloride channels and transporters in living cells in a pH-independent manner. The DNA nanodevice, called Clensor, is composed of sensing, normalizing and targeting modules, and is designed to localize within organelles along the endolysosomal pathway. It allows fluorescent, ratiometric sensing of chloride ions across the entire physiological regime. We used Clensor to quantitate the resting chloride concentration in the lumen of acidic organelles in Drosophila melanogaster. We showed that lumenal lysosomal chloride, which is implicated in various lysosomal storage diseases, is regulated by the intracellular chloride transporter DmClC-b.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas de Química Analítica/instrumentação , Cloretos/metabolismo , DNA/química , Concentração de Íons de Hidrogênio , Organelas/metabolismo , Animais , Células Cultivadas , Cloretos/análise , Cloretos/química , Drosophila melanogaster , Desenho de Equipamento , Análise de Falha de Equipamento , Análise em Microsséries/instrumentação , Nanotecnologia/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Nanoscale ; 7(22): 10008-12, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25990365

RESUMO

Here we tune the pH sensitivity of a DNA-based conformational switch, called the I-switch, to yield a set of fluorescent pH sensitive nanodevices with a collective, expanded pH sensing regime from 5.3 to 7.5. The expanded pH regime of this new family of I-switches originates from a dramatic improvement in the overall percentage signal change in response to pH of these nanodevices.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Técnicas Biossensoriais/instrumentação , Corantes Fluorescentes/química , Concentração de Íons de Hidrogênio , Nanotecnologia/instrumentação , Sensibilidade e Especificidade
4.
Nanoscale ; 6(2): 1144-52, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24297098

RESUMO

DNA has been used to build nanomachines with potential in cellulo and in vivo applications. However their different in cellulo applications are limited by the lack of generalizable strategies to deliver them to precise intracellular locations. Here we describe a new molecular design of DNA pH sensors with response times that are nearly 20 fold faster. Further, by changing the sequence of the pH sensitive domain of the DNA sensor, we have been able to tune their pH sensitive regimes and create a family of DNA sensors spanning ranges from pH 4 to 7.6. To enable a generalizable targeting methodology, this new sensor design also incorporates a 'handle' domain. We have identified, using a phage display screen, a set of three recombinant antibodies (scFv) that bind sequence specifically to the handle domain. Sequence analysis of these antibodies revealed several conserved residues that mediate specific interactions with the cognate DNA duplex. We also found that all three scFvs clustered into different branches indicating that their specificity arises from mutations in key residues. When one of these scFvs is fused to a membrane protein (furin) that traffics via the cell surface, the scFv-furin chimera binds the 'handle' and ferries a family of DNA pH sensors along the furin endocytic pathway. Post endocytosis, all DNA nanodevices retain their functionality in cellulo and provide spatiotemporal pH maps of retrogradely trafficking furin inside living cells. This new molecular technology of DNA-scFv-protein chimeras can be used to site-specifically complex DNA nanostructures for bioanalytical applications.


Assuntos
DNA/química , Anticorpos de Cadeia Única/imunologia , Sequência de Aminoácidos , Dicroísmo Circular , DNA/metabolismo , Endocitose , Corantes Fluorescentes/química , Furina/imunologia , Furina/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Ácidos Nucleicos Imobilizados/química , Ácidos Nucleicos Imobilizados/metabolismo , Dados de Sequência Molecular , Nanoestruturas/química , Biblioteca de Peptídeos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo
5.
Nat Nanotechnol ; 8(6): 459-67, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23708428

RESUMO

DNA is a versatile scaffold for molecular sensing in living cells, and various cellular applications of DNA nanodevices have been demonstrated. However, the simultaneous use of different DNA nanodevices within the same living cell remains a challenge. Here, we show that two distinct DNA nanomachines can be used simultaneously to map pH gradients along two different but intersecting cellular entry pathways. The two nanomachines, which are molecularly programmed to enter cells via different pathways, can map pH changes within well-defined subcellular environments along both pathways inside the same cell. We applied these nanomachines to probe the pH of early endosomes and the trans-Golgi network, in real time. When delivered either sequentially or simultaneously, both nanomachines localized into and independently captured the pH of the organelles for which they were designed. The successful functioning of DNA nanodevices within living systems has important implications for sensing and therapies in a diverse range of contexts.


Assuntos
Técnicas Biossensoriais , DNA/metabolismo , Nanoestruturas/química , Rede trans-Golgi/metabolismo , DNA/química , Endocitose , Endossomos/química , Endossomos/metabolismo , Complexo de Golgi/química , Complexo de Golgi/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Redes e Vias Metabólicas , Nanotecnologia , Rede trans-Golgi/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA