Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Clin Epigenetics ; 11(1): 147, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640805

RESUMO

BACKGROUND: Current diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, resulting in overdiagnosis and overtreatment of clinically insignificant tumors. Thus, to improve the management of PC, novel biomarkers are urgently needed. RESULTS: In this study, we integrated genome-wide methylome (Illumina 450K DNA methylation array (450K)) and RNA sequencing (RNAseq) data performed in a discovery set of 27 PC and 15 adjacent normal (AN) prostate tissue samples to identify candidate driver genes involved in PC development and/or progression. We found significant enrichment for homeobox genes among the most aberrantly methylated and transcriptionally dysregulated genes in PC. Specifically, homeobox gene MEIS2 (Myeloid Ecotropic viral Insertion Site 2) was significantly hypermethylated (p < 0.0001, Mann-Whitney test) and transcriptionally downregulated (p < 0.0001, Mann-Whitney test) in PC compared to non-malignant prostate tissue in our discovery sample set, which was also confirmed in an independent validation set including > 500 PC and AN tissue samples in total (TCGA cohort analyzed by 450K and RNAseq). Furthermore, in three independent radical prostatectomy (RP) cohorts (n > 700 patients in total), low MEIS2 transcriptional expression was significantly associated with poor biochemical recurrence (BCR) free survival (p = 0.0084, 0.0001, and 0.0191, respectively; log-rank test). Next, we analyzed another RP cohort consisting of > 200 PC, AN, and benign prostatic hyperplasia (BPH) samples by quantitative methylation-specific PCR (qMSP) and found that MEIS2 was significantly hypermethylated (p < 0.0001, Mann-Whitney test) in PC compared to non-malignant prostate tissue samples (AN and BPH) with an AUC > 0.84. Moreover, in this cohort, aberrant MEIS2 hypermethylation was significantly associated with post-operative BCR (p = 0.0068, log-rank test), which was subsequently confirmed (p = 0.0067; log-rank test) in the independent TCGA validation cohort (497 RP patients; 450K data). CONCLUSIONS: To the best of our knowledge, this is the first study to investigate, demonstrate, and independently validate a prognostic biomarker potential for MEIS2 at the transcriptional expression level and at the DNA methylation level in PC.


Assuntos
Metilação de DNA , Regulação para Baixo , Proteínas de Homeodomínio/genética , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/genética , Idoso , Biomarcadores Tumorais/genética , Epigênese Genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/cirurgia , Regiões Promotoras Genéticas , Prostatectomia , Neoplasias da Próstata/cirurgia , Análise de Sequência de RNA , Análise de Sobrevida , Sequenciamento Completo do Genoma
2.
Br J Cancer ; 119(12): 1527-1537, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30449885

RESUMO

BACKGROUND: The current inability to predict whether a primary prostate cancer (PC) will progress to metastatic disease leads to overtreatment of indolent PCs as well as undertreatment of aggressive PCs. Here, we explored the transcriptional changes associated with metastatic progression of multifocal hormone-naive PC. METHODS: Using total RNA-sequencing, we analysed laser micro-dissected primary PC foci (n = 23), adjacent normal prostate tissue samples (n = 23) and lymph node metastases (n = 9) from ten hormone-naive PC patients. Genes important for PC progression were identified using differential gene expression and clustering analysis. From these, two multi-gene-based expression signatures (models) were developed, and their prognostic potential was evaluated using Cox-regression and Kaplan-Meier analyses in three independent radical prostatectomy (RP) cohorts (>650 patients). RESULTS: We identified several novel PC-associated transcripts deregulated during PC progression, and these transcripts were used to develop two novel gene-expression-based prognostic models. The models showed independent prognostic potential in three RP cohorts (n = 405, n = 107 and n = 91), using biochemical recurrence after RP as the primary clinical endpoint. CONCLUSIONS: We identified several transcripts deregulated during PC progression and developed two new prognostic models for PC risk stratification, each of which showed independent prognostic value beyond routine clinicopathological factors in three independent RP cohorts.


Assuntos
Neoplasias da Próstata/patologia , Transcriptoma , Idoso , Progressão da Doença , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade , Análise de Sequência de RNA
3.
Mol Oncol ; 12(4): 545-560, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29465788

RESUMO

Current diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, leading to overdiagnosis and overtreatment. Aberrant promoter hypermethylation of specific genes has been suggested as novel candidate biomarkers for PC that may improve diagnosis and prognosis. We here analyzed ST6GALNAC3 and ZNF660 promoter methylation in prostate tissues, and ST6GALNAC3, ZNF660, CCDC181, and HAPLN3 promoter methylation in liquid biopsies. First, using four independent patient sample sets, including a total of 110 nonmalignant (NM) and 705 PC tissue samples, analyzed by methylation-specific qPCR or methylation array, we found that hypermethylation of ST6GALNAC3 and ZNF660 was highly cancer-specific with areas under the curve (AUC) of receiver operating characteristic (ROC) curve analysis of 0.917-0.995 and 0.846-0.903, respectively. Furthermore, ZNF660 hypermethylation was significantly associated with biochemical recurrence in two radical prostatectomy (RP) cohorts of 158 and 392 patients and remained significant also in the subsets of patients with Gleason score ≤7 (univariate Cox regression and log-rank tests, P < 0.05), suggesting that ZNF660 methylation analysis can potentially help to stratify low-/intermediate-grade PCs into indolent vs. more aggressive subtypes. Notably, ZNF660 hypermethylation was also significantly associated with poor overall and PC-specific survival in the RP cohort (n = 158) with long clinical follow-up available. Moreover, as proof of principle, we successfully detected highly PC-specific hypermethylated circulating tumor DNA (ctDNA) for ST6GALNAC3, ZNF660, HAPLN3, and CCDC181 in liquid biopsies (serum) from 27 patients with PC vs. 10 patients with BPH, using droplet digital methylation-specific PCR analysis. Finally, we generated a three-gene (ST6GALNAC3/CCDC181/HAPLN3) ctDNA hypermethylation model, which detected PC with 100% specificity and 67% sensitivity. In conclusion, we here for the first time demonstrate diagnostic biomarker potential of ST6GALNAC3 and ZNF660 methylation, as well as prognostic biomarker potential of ZNF660. Furthermore, we show that hypermethylation of four genes can be detected in ctDNA in liquid biopsies (serum) from patients with PC.


Assuntos
Biomarcadores Tumorais/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas , Neoplasias da Próstata/metabolismo , Sialiltransferases/metabolismo , Idoso , Idoso de 80 Anos ou mais , Humanos , Biópsia Líquida , Masculino , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia
4.
Int J Mol Sci ; 18(9)2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28930171

RESUMO

Overdiagnosis and overtreatment of clinically insignificant tumors remains a major problem in prostate cancer (PC) due to suboptimal diagnostic and prognostic tools. Thus, novel biomarkers are urgently needed. In this study, we investigated the biomarker potential of Trefoil factor 3 (TFF3) promoter methylation and RNA expression levels for PC. Initially, by quantitative methylation specific PCR (qMSP) analysis of a large radical prostatectomy (RP) cohort (n = 292), we found that the TFF3 promoter was significantly hypomethylated in PC compared to non-malignant (NM) prostate tissue samples (p < 0.001) with an AUC (area under the curve) of 0.908 by receiver operating characteristics (ROC) curve analysis. Moreover, significant TFF3 promoter hypomethylation (p ≤ 0.010) as well as overexpression (p < 0.001) was found in PC samples from another large independent patient sample set (498 PC vs. 67 NM) analyzed by Illumina 450K DNA methylation arrays and/or RNA sequencing. TFF3 promoter methylation and transcriptional expression levels were inversely correlated, suggesting that epigenetic mechanisms contribute to the regulation of gene activity. Furthermore, low TFF3 expression was significantly associated with high ERG, ETS transcription factor (ERG) expression (p < 0.001), as well as with high Gleason score (p < 0.001), advanced pathological T-stage (p < 0.001), and prostate-specific antigen (PSA) recurrence after RP (p = 0.013; univariate Cox regression analysis). There were no significant associations between TFF3 promoter methylation levels, ERG status, or PSA recurrence in these RP cohorts. In conclusion, our results demonstrated diagnostic biomarker potential of TFF3 promoter hypomethylation for PC as well as prognostic biomarker potential of TFF3 RNA expression. To the best of our knowledge, this is the most comprehensive study of TFF3 promoter methylation and transcriptional expression in PC to date.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Fator Trefoil-3/genética , Adulto , Idoso , Estudos de Coortes , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Próstata/metabolismo , Próstata/patologia , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/cirurgia
5.
Cell Syst ; 4(6): 587-599.e4, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28601559

RESUMO

This study investigates the challenge of comprehensively cataloging the complete human proteome from a single-cell type using mass spectrometry (MS)-based shotgun proteomics. We modify a classical two-dimensional high-resolution reversed-phase peptide fractionation scheme and optimize a protocol that provides sufficient peak capacity to saturate the sequencing speed of modern MS instruments. This strategy enables the deepest proteome of a human single-cell type to date, with the HeLa proteome sequenced to a depth of ∼584,000 unique peptide sequences and ∼14,200 protein isoforms (∼12,200 protein-coding genes). This depth is comparable with next-generation RNA sequencing and enables the identification of post-translational modifications, including ∼7,000 N-acetylation sites and ∼10,000 phosphorylation sites, without the need for enrichment. We further demonstrate the general applicability and clinical potential of this proteomics strategy by comprehensively quantifying global proteome expression in several different human cancer cell lines and patient tissue samples.


Assuntos
Proteoma/metabolismo , Proteômica/métodos , Células A549 , Acetilação , Linhagem Celular , Linhagem Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Espectrometria de Massas/métodos , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas/metabolismo
6.
Oncotarget ; 8(4): 5774-5788, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28052017

RESUMO

PURPOSE: The lack of biomarkers that can distinguish aggressive from indolent prostate cancer has caused substantial overtreatment of clinically insignificant disease. Here, by genome-wide DNA methylome profiling, we sought to identify new biomarkers to improve the accuracy of prostate cancer diagnosis and prognosis. EXPERIMENTAL DESIGN: Eight novel candidate markers, COL4A6, CYBA, TCAF1 (FAM115A), HLF, LINC01341 (LOC149134), LRRC4, PROM1, and RHCG, were selected from Illumina Infinium HumanMethylation450 BeadChip analysis of 21 tumor (T) and 21 non-malignant (NM) prostate specimens. Diagnostic potential was further investigated by methylation-specific qPCR analysis of 80 NM vs. 228 T tissue samples. Prognostic potential was assessed by Kaplan-Meier, uni- and multivariate Cox regression analysis in 203 Danish radical prostatectomy (RP) patients (cohort 1), and validated in an independent cohort of 286 RP patients from Switzerland and the U.S. (cohort 2). RESULTS: Hypermethylation of the 8 candidates was highly cancer-specific (area under the curves: 0.79-1.00). Furthermore, high methylation of the 2-gene panel RHCG-TCAF1 was predictive of biochemical recurrence (BCR) in cohort 1, independent of the established clinicopathological parameters Gleason score, pathological tumor stage, and pre-operative PSA (HR (95% confidence interval (CI)): 2.09 (1.26 - 3.46); P = 0.004), and this was successfully validated in cohort 2 (HR (95% CI): 1.81 (1.05 - 3.12); P = 0.032). CONCLUSION: Methylation of the RHCG-TCAF1 panel adds significant independent prognostic value to established prognostic parameters for prostate cancer and thus may help to guide treatment decisions in the future. Further investigation in large independent cohorts is necessary before translation into clinical utility.


Assuntos
Biomarcadores Tumorais/genética , Proteínas de Transporte de Cátions/genética , Metilação de DNA , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Neoplasias da Próstata/cirurgia , Adulto , Idoso , Dinamarca , Epigênese Genética , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Regiões Promotoras Genéticas , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Análise de Sobrevida , Suíça , Estados Unidos
7.
Sci Rep ; 7: 40636, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28084441

RESUMO

Prostate cancer (PC) diagnosis is based on histological evaluation of prostate needle biopsies, which have high false negative rates. Here, we investigated if cancer-associated epigenetic field effects in histologically normal prostate tissue may be used to increase sensitivity for PC. We focused on nine genes (AOX1, CCDC181 (C1orf114), GABRE, GAS6, HAPLN3, KLF8, MOB3B, SLC18A2, and GSTP1) known to be hypermethylated in PC. Using quantitative methylation-specific PCR, we analysed 66 malignant and 134 non-malignant tissue samples from 107 patients, who underwent ultrasound-guided prostate biopsy (67 patients had at least one cancer-positive biopsy, 40 had exclusively cancer-negative biopsies). Hypermethylation was detectable for all genes in malignant needle biopsy samples (AUC: 0.80 to 0.98), confirming previous findings in prostatectomy specimens. Furthermore, we identified a four-gene methylation signature (AOX1xGSTP1xHAPLN3xSLC18A2) that distinguished histologically non-malignant biopsies from patients with vs. without PC in other biopsies (AUC = 0.65; sensitivity = 30.8%; specificity = 100%). This signature was validated in an independent patient set (59 PC, 36 adjacent non-malignant, and 9 normal prostate tissue samples) analysed on Illumina 450 K methylation arrays (AUC = 0.70; sensitivity = 40.6%; specificity = 100%). Our results suggest that a novel four-gene signature may be used to increase sensitivity for PC diagnosis through detection of epigenetic field effects in histologically non-malignant prostate tissue samples.


Assuntos
Metilação de DNA , Heterogeneidade Genética , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Biópsia por Agulha , Epigênese Genética , Epigenômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Neoplasias da Próstata/cirurgia , Curva ROC , Reprodutibilidade dos Testes
8.
Oncotarget ; 7(21): 30760-71, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27120795

RESUMO

PURPOSE: This study investigates the diagnostic and prognostic biomarker potential of miRNAs in prostate cancer (PC). RESULTS: We identified several new deregulated miRNAs between non-malignant (NM) and PC tissue samples and between more/less aggressive PC subgroups. We also developed and validated a novel 13-miRNA diagnostic classifier with high sensitivity and specificity for PC. Finally, we trained a new 3-miRNA prognostic classifier (miR-185-5p+miR-221-3p+miR-326) that predicted time to biochemical recurrence (BCR) independently of routine clinicopathological variables in a training radical prostatectomy (RP) cohort (n = 126) as well as in two independent validation cohorts (n = 110 and n = 99). EXPERIMENTAL DESIGN: After RT-qPCR-based profiling of 752 miRNAs in 13 NM and 134 PC tissue samples (cohort 1), we selected 93 top candidate diagnostic/prognostic miRNAs for validation in two independent patient sets (cohort 2: 19 NM and 138 PC; cohort 3: 28 NM and 113 PC samples). Diagnostic potential was assessed by ROC curve analysis and prognostic potential by Kaplan-Meier, uni- and multivariate Cox regression analyses. BCR after RP was used as endpoint. CONCLUSIONS: This is the first report of a miRNA signature with significant independent prognostic value demonstrated in three PC patient cohorts.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Recidiva Local de Neoplasia/genética , Neoplasias da Próstata/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Estudos de Coortes , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Prognóstico , Próstata/patologia , Prostatectomia , Neoplasias da Próstata/mortalidade , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
9.
Mol Oncol ; 10(6): 825-37, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26905753

RESUMO

Limitations of current diagnostic and prognostic tools for prostate cancer (PC) have led to over-diagnosis and over-treatment. Here, we investigate the biomarker potential of the SLC18A2 (VMAT2) gene for PC at three molecular levels. Thus, SLC18A2 promoter methylation was analyzed in 767 malignant and 78 benign radical prostatectomy (RP) samples using methylation-specific qPCR and Illumina 450K methylation microarray data. SLC18A2 transcript levels were assessed in 412 malignant and 45 benign RP samples using RNAseq data. SLC18A2 protein was evaluated by immunohistochemistry in 502 malignant and 305 benign RP samples. Cancer-specificity of molecular changes was tested using Mann-Whitney U tests and/or receiver operating characteristic (ROC) analyses. Log rank, uni- and multivariate Cox regression tests were used for survival analyses. We found that SLC18A2 promoter hypermethylation was highly cancer-specific (area under the curve (AUC): 0.923-0.976) and associated with biochemical recurrence (BCR) after RP in univariate analyses. SLC18A2 transcript levels were reduced in PC and had independent prognostic value for BCR after RP (multivariate HR 0.13, P < 0.05). Likewise, SLC18A2 protein was down-regulated in PC (AUC 0.898) and had independent prognostic value for BCR (multivariate HR 0.51, P < 0.05). Reduced SLC18A2 protein expression was also associated with poor overall survival in univariate analysis (HR 0.29, P < 0.05). Our results highlight SLC18A2 as a new promising methylation marker candidate for PC diagnosis. Furthermore, SLC18A2 expression (RNA and protein) showed promising prognostic potential beyond routine clinicopathological variables. Thus, novel SLC18A2-based molecular tests could have useful future applications for PC detection and identification of high-risk patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Proteínas Vesiculares de Transporte de Monoamina/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Metilação de DNA , Humanos , Masculino , Prognóstico , Regiões Promotoras Genéticas , Próstata/metabolismo , Próstata/cirurgia , Prostatectomia , Neoplasias da Próstata/cirurgia , RNA Mensageiro/análise , RNA Mensageiro/genética , Análise de Sobrevida , Proteínas Vesiculares de Transporte de Monoamina/análise
10.
Clin Epigenetics ; 7: 111, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26478752

RESUMO

BACKGROUND: Prostate cancer (PC) can be stratified into distinct molecular subtypes based on TMPRSS2-ERG gene fusion status, but its potential prognostic value remains controversial. Likewise, routine clinicopathological features cannot clearly distinguish aggressive from indolent tumors at the time of diagnosis; thus, new prognostic biomarkers are urgently needed. The DNA methylation variant 5-hydroxymethylcytosine (5hmC, an oxidized derivative of 5-methylcytosine) has recently emerged as a new diagnostic and/or prognostic biomarker candidate for several human malignancies. However, this remains to be systematically investigated for PC. In this study, we determined 5hmC levels in 311 PC (stratified by ERG status) and 228 adjacent non-malignant (NM) prostate tissue specimens by immunohistochemical analysis of a tissue microarray, representing a large radical prostatectomy (RP) cohort with long clinical follow-up. We investigated possible correlations between 5hmC and routine clinicopathological variables and assessed the prognostic potential of 5hmC by Kaplan-Meier and uni- and multivariate Cox regression analyses in ERG+ (n = 178) vs. ERG- (n = 133) PCs using biochemical recurrence (BCR) as endpoint. RESULTS: We observed a borderline significant (p = 0.06) reduction in 5hmC levels in PC compared to NM tissue samples, which was explained by a highly significant (p < 0.001) loss of 5hmC in ERG- PCs. ERG status was not predictive of BCR in this cohort (p = 0.73), and no significant association was found between BCR and 5hmC levels in ERG+ PCs (p = 0.98). In contrast, high 5hmC immunoreactivity was a significant adverse predictor of BCR after RP in ERG- PCs, independent of Gleason score, pathological tumor stage, surgical margin status, and pre-operative prostate-specific antigen (PSA) level (hazard ratio (HR) (95 % confidence interval (CI)): 1.62 (1.15-2.28), p = 0.006). CONCLUSIONS: This is the first study to demonstrate a prognostic potential for 5hmC in PC. Our findings highlight the importance of ERG stratification in PC biomarker studies and suggest that epigenetic mechanisms involving 5hmC are important for the development and/or progression of ERG- PC.

11.
Clin Cancer Res ; 20(8): 2169-81, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24737792

RESUMO

PURPOSE: Available tools for prostate cancer diagnosis and prognosis are suboptimal and novel biomarkers are urgently needed. Here, we investigated the regulation and biomarker potential of the GABRE∼miR-452∼miR-224 genomic locus. EXPERIMENTAL DESIGN: GABRE/miR-452/miR-224 transcriptional expression was quantified in 80 nonmalignant and 281 prostate cancer tissue samples. GABRE∼miR-452∼miR-224 promoter methylation was determined by methylation-specific qPCR (MethyLight) in 35 nonmalignant, 293 prostate cancer [radical prostatectomy (RP) cohort 1] and 198 prostate cancer tissue samples (RP cohort 2). Diagnostic/prognostic biomarker potential of GABRE∼miR-452∼miR-224 methylation was evaluated by ROC, Kaplan-Meier, uni- and multivariate Cox regression analyses. Functional roles of miR-224 and miR-452 were investigated in PC3 and DU145 cells by viability, migration, and invasion assays and gene-set enrichment analysis (GSEA) of posttransfection transcriptional profiling data. RESULTS: GABRE∼miR-452∼miR-224 was significantly downregulated in prostate cancer compared with nonmalignant prostate tissue and had highly cancer-specific aberrant promoter hypermethylation (AUC = 0.98). Functional studies and GSEA suggested that miR-224 and miR-452 inhibit proliferation, migration, and invasion of PC3 and DU145 cells by direct/indirect regulation of pathways related to the cell cycle and cellular adhesion and motility. Finally, in uni- and multivariate analyses, high GABRE∼miR-452∼miR-224 promoter methylation was significantly associated with biochemical recurrence in RP cohort 1, which was successfully validated in RP cohort 2. CONCLUSION: The GABRE∼miR-452∼miR-224 locus is downregulated and hypermethylated in prostate cancer and is a new promising epigenetic candidate biomarker for prostate cancer diagnosis and prognosis. Tumor-suppressive functions of the intronic miR-224 and miR-452 were demonstrated in two prostate cancer cell lines, suggesting that epigenetic silencing of GABRE∼miR-452∼miR-224 may be selected for in prostate cancer.


Assuntos
Metilação de DNA , MicroRNAs/genética , Regiões Promotoras Genéticas/genética , Neoplasias da Próstata/genética , Receptores de GABA-A/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Sobrevivência Celular/genética , Estudos de Coortes , Ilhas de CpG/genética , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Recidiva Local de Neoplasia , Prognóstico , Modelos de Riscos Proporcionais , Prostatectomia/métodos , Neoplasias da Próstata/cirurgia
12.
Drug Deliv Transl Res ; 4(1): 19-30, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25786615

RESUMO

Prostate cancer (PC) is the most frequent cancer in men in the Western world. Currently, serum prostate-specific antigen levels and digital rectal examinations are used to indicate the need for diagnostic prostate biopsy, but lack in specificity and sensitivity. Thus, many men undergo unnecessary biopsy, and better and less invasive tools for PC detection are needed. Furthermore, whereas aggressive PC should be treated immediately to prevent dissemination, indolent PC often does not progress and overtreatment should be avoided. Currently, the best predictors of aggressiveness are Gleason score and T-stage of the primary PC. Better tools to assess PC aggressiveness could aid in treatment decisions. Recently, circulating miRNAs have been suggested as potential new biomarkers for PC with diagnostic and prognostic potential. Here, to identify new serum miRNA biomarker candidates for PC, we performed genome-wide miRNA profiling of serum samples from 13 benign prostatic hyperplasia (BPH) control patients and 31 PC patients. Furthermore, we carefully reviewed the literature on circulating miRNA biomarkers for PC. Our results confirmed the de-regulation of miR-141 and miR-375, two of the most well-documented candidate miRNA markers for PC. Moreover, we identified several new potential serum miRNA markers for PC and developed three novel and highly specific (100 %) miRNA candidate marker panels able to identify 84 % of all PC patients (miR-562/miR-210/miR-501-3p/miR-375/miR-551b), 80 % of patients with disseminated PC when compared to BPH patients (let-7a*/miR-210/miR-562/miR-616), and 75 % of disseminated PC patients when compared to localized PC patients (miR-375/miR-708/miR-1203/miR-200a), demonstrating high potential of serum miRNAs for diagnosing and staging of PC.

13.
J Clin Oncol ; 31(26): 3250-8, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23918943

RESUMO

PURPOSE: Diagnostic and prognostic tools for prostate cancer (PC) are suboptimal, causing overtreatment of indolent PC and risk of delayed treatment of aggressive PC. Here, we identify six novel candidate DNA methylation markers for PC with promising diagnostic and prognostic potential. METHODS: Microarray-based screening and bisulfite sequencing of 20 nonmalignant and 29 PC tissue specimens were used to identify new candidate DNA hypermethylation markers for PC. Diagnostic and prognostic potential was evaluated in 35 nonmalignant prostate tissue samples, 293 radical prostatectomy (RP) samples (cohort 1, training), and 114 malignant RP samples (cohort 2, validation) collected in Denmark, Switzerland, Germany, and Finland. Sensitivity and specificity for PC were evaluated by receiver operating characteristic analyses. Correlations between DNA methylation levels and biochemical recurrence were assessed using log-rank tests and univariate and multivariate Cox regression analyses. RESULTS: Hypermethylation of AOX1, C1orf114, GAS6, HAPLN3, KLF8, and MOB3B was highly cancer specific (area under the curve, 0.89 to 0.98). Furthermore, high C1orf114 methylation was significantly (P < .05) associated with biochemical recurrence in multivariate analysis in cohort 1 (hazard ratio [HR], 3.10; 95% CI, 1.89 to 5.09) and was successfully validated in cohort 2 (HR, 3.27; 95% CI, 1.17 to 9.12). Moreover, a significant (P < .05) three-gene prognostic methylation signature (AOX1/C1orf114/HAPLN3), classifying patients into low- and high-methylation subgroups, was trained in cohort 1 (HR, 1.91; 95% CI, 1.26 to 2.90) and validated in cohort 2 (HR, 2.33; 95% CI, 1.31 to 4.13). CONCLUSION: We identified six novel candidate DNA methylation markers for PC. C1orf114 hypermethylation and a three-gene methylation signature were independent predictors of time to biochemical recurrence after RP in two PC patient cohorts.


Assuntos
Biomarcadores Tumorais/genética , Metilação de DNA , Recidiva Local de Neoplasia/diagnóstico , Neoplasias da Próstata/mortalidade , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Dinamarca , Finlândia , Seguimentos , Alemanha , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Estadiamento de Neoplasias , Prognóstico , Regiões Promotoras Genéticas/genética , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Sensibilidade e Especificidade , Taxa de Sobrevida , Suíça , Estudos de Validação como Assunto
14.
Cell Div ; 7(1): 7, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22394506

RESUMO

UNLABELLED: ABSTACT: BACKGROUND: The inorganic phosphate (Pi) transporter, PiT1 (SLC20A1), is ubiquitously expressed in mammalian cells. It has previously been shown that down-regulation of PiT1 severely impaired the proliferation of two transformed human cells lines, HepG2 and HeLa, and the tumorigenicity of HeLa cells in nude mice. Moreover, PiT1 knock-out mice do not survive past E12.5 and from E10.5, the embryos were found to be growth-retarded and showed reduced proliferation of liver cells. Isolated mouse embryonic fibroblasts with knocked out as well as reduced PiT1 expression levels also exhibited impaired proliferation. Together these results suggest that a certain level of PiT1 is important for proliferation. We have here investigated the role of PiT1 in regulation of cell proliferation using two strictly density-inhibited cells lines, the murine MC3T3-E1 and NIH3T3 cells. RESULTS: We found that knock-down of PiT1 in MC3T3-E1 cells led to impaired proliferation supporting that at least a certain level of PiT1 is important for wildtype level of proliferation. We, however, also observed that MC3T3-E1 and NIH3T3 cells themselves regulate their endogenous PiT1 mRNA levels with lower levels in general correlating with decreased proliferation/increased cell density. Moreover, over-expression of human PiT1 led to increased proliferation of both MC3T3-E1 and NIH3T3 cultures and resulted in higher cell densities in cultures of these two strictly density-inhibited cell lines. In addition, when we transformed NIH3T3 cells by cultivation in fetal bovine serum, cells over-expressing human PiT1 formed more colonies in soft agar than control cells. CONCLUSIONS: We conclude that not only is a certain level of PiT1 necessary for normal cell division as suggested by previously published studies, rather the cellular PiT1 level is involved in regulating cell proliferation and cell density and an increased PiT1 expression can indeed make NIH3T3 cells more sensitive to transformation. We have thus provided the first evidence for that expression of the type III Pi transporter, PiT1, above the endogenous level can drive cell proliferation and overrule cell density constraints, and the results bridge previous observations showing that a certain PiT1 level is important for regulating normal embryonic growth/development and for tumorigenicity of HeLa cells.

15.
Hum Gene Ther ; 20(4): 337-49, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19281432

RESUMO

Retroviral vector-mediated gene transfer has been used successfully in clinical gene therapy. Cells of the hematopoietic lineages, however, remain difficult to transduce, although precoating of culture vessels with the fibronectin fragment CH-296 may improve transduction efficiency. Alternatively, low-speed centrifugation of vector-containing supernatant onto culture vessels may improve transduction efficiency in the absence of CH-296 preloading. Using the NIH/3T3-derived Moloney murine leukemia virus-based packaging cell lines PG13, PA317, and PT67, we here show that preloading by low-speed centrifugation improves transduction efficiency in a packaging cell subclone-dependent manner. Preloading by centrifugation, however, cannot generally replace CH-296 and we obtained the overall highest transduction levels when combining centrifugation and CH-296 precoating. We found, moreover, that the factor responsible for high susceptibility to preloading in our PG13-derived vector supernatant was transferable to a PA317-derived vector supernatant with low susceptibility to preloading. Furthermore, our PA317, PG13, and PT67 subclones shed into their supernatants variable amounts of fibronectin. This soluble fibronectin formed aggregates of various sizes and generated complexes with vector particles. The fibronectin-vector complexes readily sedimented onto culture vessels and copurified after fibronectin-specific affinity purification of vector-containing supernatants. Finally, vector supernatant from 293T cells, which barely produce fibronectin, was not susceptible to preloading. The susceptibility to preloading by centrifugation thus appears to be dependent both on the specific packaging cell line and on the association of vector particles and packaging cell-produced fibronectin. Rigorous screening of individual vector-containing supernatants is therefore required to identify optimal transduction conditions for retroviral gene transfer.


Assuntos
Fibronectinas/metabolismo , Vetores Genéticos/genética , Retroviridae/genética , Transdução Genética , Montagem de Vírus , Animais , Linhagem Celular , Centrifugação , Cromatografia de Afinidade , Células Clonais , Humanos , Camundongos , Fatores de Tempo , Técnicas de Cultura de Tecidos , Vírion/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...