Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4484, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802340

RESUMO

Deciphering the intricate dynamic events governing type I interferon (IFN) signaling is critical to unravel key regulatory mechanisms in host antiviral defense. Here, we leverage TurboID-based proximity labeling coupled with affinity purification-mass spectrometry to comprehensively map the proximal human proteomes of all seven canonical type I IFN signaling cascade members under basal and IFN-stimulated conditions. This uncovers a network of 103 high-confidence proteins in close proximity to the core members IFNAR1, IFNAR2, JAK1, TYK2, STAT1, STAT2, and IRF9, and validates several known constitutive protein assemblies, while also revealing novel stimulus-dependent and -independent associations between key signaling molecules. Functional screening further identifies PJA2 as a negative regulator of IFN signaling via its E3 ubiquitin ligase activity. Mechanistically, PJA2 interacts with TYK2 and JAK1, promotes their non-degradative ubiquitination, and limits the activating phosphorylation of TYK2 thereby restraining downstream STAT signaling. Our high-resolution proximal protein landscapes provide global insights into the type I IFN signaling network, and serve as a valuable resource for future exploration of its functional complexities.


Assuntos
Interferon Tipo I , Janus Quinase 1 , Receptor de Interferon alfa e beta , Fator de Transcrição STAT2 , Transdução de Sinais , TYK2 Quinase , Ubiquitinação , Humanos , Células HEK293 , Interferon Tipo I/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Janus Quinase 1/metabolismo , Fosforilação , Proteoma/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , TYK2 Quinase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Open Forum Infect Dis ; 11(1): ofad641, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38179103

RESUMO

Genetic defects in the interferon (IFN) system or neutralizing autoantibodies against type I IFNs contribute to severe COVID-19. Such autoantibodies were proposed to affect post-COVID-19 syndrome (PCS), possibly causing persistent fatigue for >12 weeks after confirmed SARS-CoV-2 infection. In the current study, we investigated 128 patients with PCS, 21 survivors of severe COVID-19, and 38 individuals who were asymptomatic. We checked for autoantibodies against IFN-α, IFN-ß, and IFN-ω. Few patients with PCS had autoantibodies against IFNs but with no neutralizing activity, indicating a limited role of type I IFNs in PCS pathogenesis. In a subset consisting of 28 patients with PCS, we evaluated IFN-stimulated gene activity and showed that it did not correlate with fatigue. In conclusion, impairment of the type I IFN system is unlikely responsible for adult PCS.

3.
Mol Ther Oncolytics ; 31: 100741, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38020062

RESUMO

Low pathogenic influenza A viruses (IAVs) have shown promising oncolytic potential in lung cancer-bearing mice. However, as replication-competent pathogens, they may cause side effects in immunocompromised cancer patients. To circumvent this problem, we genetically engineered nonreplicating IAVs lacking the hemagglutinin (HA) gene (ΔHA IAVs), but reconstituted the viral envelope with recombinant HA proteins to allow a single infection cycle. To optimize the therapeutic potential and improve immunomodulatory properties, these replication-incompetent IAVs were complemented with a murine interferon-gamma (mIFN-γ) gene. After intratracheal administration to transgenic mice that develop non-small cell lung cancer (NSCLC), the ΔHA IAVs induced potent tumor destruction. However, ΔHA IAVs armed with mIFN-γ exhibited an even stronger and more sustained effect, achieving 85% tumor reduction at day 12 postinfection. In addition, ΔHA-mIFN-γ viruses were proven to be efficient in recruiting and activating natural killer cells and macrophages from the periphery and in inducing cytotoxic T lymphocytes. Most important, both viruses, and particularly IFN-γ-encoding viruses, activated tumor-associated alveolar macrophages toward a proinflammatory M1-like phenotype. Therefore, replication-incompetent ΔHA-mIFN-γ-IAVs are safe and efficient oncolytic viruses that additionally exhibit immune cell activating properties and thus represent a promising innovative therapeutic option in the fight against NSCLC.

4.
Lancet Diabetes Endocrinol ; 11(9): 675-693, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524103

RESUMO

Viruses have been present during all evolutionary steps on earth and have had a major effect on human history. Viral infections are still among the leading causes of death. Another public health concern is the increase of non-communicable metabolic diseases in the last four decades. In this Review, we revisit the scientific evidence supporting the presence of a strong bidirectional feedback loop between several viral infections and metabolic diseases. We discuss how viruses might lead to the development or progression of metabolic diseases and conversely, how metabolic diseases might increase the severity of a viral infection. Furthermore, we discuss the clinical relevance of the current evidence on the relationship between viral infections and metabolic disease and the present and future challenges that should be addressed by the scientific community and health authorities.


Assuntos
Doenças Metabólicas , Viroses , Humanos , Relevância Clínica , Viroses/complicações , Doenças Metabólicas/epidemiologia , Saúde Pública
5.
Proc Natl Acad Sci U S A ; 120(21): e2300320120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186845

RESUMO

Iridoviridae, such as the lymphocystis disease virus-1 (LCDV-1) and other viruses, encode viral insulin-like peptides (VILPs) which are capable of triggering insulin receptors (IRs) and insulin-like growth factor receptors. The homology of VILPs includes highly conserved disulfide bridges. However, the binding affinities to IRs were reported to be 200- to 500-fold less effective compared to the endogenous ligands. We therefore speculated that these peptides also have noninsulin functions. Here, we report that the LCDV-1 VILP can function as a potent and highly specific inhibitor of ferroptosis. Induction of cell death by the ferroptosis inducers erastin, RSL3, FIN56, and FINO2 and nonferroptotic necrosis produced by the thioredoxin-reductase inhibitor ferroptocide were potently prevented by LCDV-1, while human insulin had no effect. Fas-induced apoptosis, necroptosis, mitotane-induced cell death and growth hormone-releasing hormone antagonist-induced necrosis were unaffected, suggesting the specificity to ferroptosis inhibition by the LCDV-1 VILP. Mechanistically, we identified the viral C-peptide to be required for inhibition of lipid peroxidation and ferroptosis inhibition, while the human C-peptide exhibited no antiferroptotic properties. In addition, the deletion of the viral C-peptide abolishes radical trapping activity in cell-free systems. We conclude that iridoviridae, through the expression of insulin-like viral peptides, are capable of preventing ferroptosis. In analogy to the viral mitochondrial inhibitor of apoptosis and the viral inhibitor of RIP activation (vIRA) that prevents necroptosis, we rename the LCDV-1 VILP a viral peptide inhibitor of ferroptosis-1. Finally, our findings indicate that ferroptosis may function as a viral defense mechanism in lower organisms.


Assuntos
Apoptose , Insulina , Humanos , Peptídeo C , Necrose , Morte Celular
6.
Eur J Immunol ; 53(6): e2250164, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37027328

RESUMO

The type I IFN (IFN-I) system is essential to limit severe viral disease in humans. Thus, IFN-I deficiencies are associated with serious life-threatening infections. Remarkably, some rare individuals with chronic autoimmune diseases develop neutralizing autoantibodies (autoAbs) against IFN-Is thereby compromising their own innate antiviral defenses. Furthermore, the prevalence of anti-IFN-I autoAbs in apparently healthy individuals increases with age, such that ∼4% of those over 70 years old are affected. Here, I review the literature on factors that may predispose individuals to develop anti-IFN-I autoAbs, such as reduced self-tolerance caused by defects in the genes AIRE, NFKB2, and FOXP3 (among others), or by generally impaired thymus function, including thymic involution in the elderly. In addition, I discuss the hypothesis that predisposed individuals develop anti-IFN-I autoAbs following "autoimmunization" with IFN-Is generated during some acute viral infections, systemic inflammatory events, or chronic IFN-I exposure. Finally, I highlight the enhanced susceptibility that individuals with anti-IFN-I autoAbs appear to have towards viral diseases such as severe COVID-19, influenza, or herpes (e.g., varicella-zoster virus, herpes simplex virus, cytomegalovirus), as well as adverse reactions to live-attenuated vaccines. Understanding the mechanisms underlying development and consequences of anti-IFN-I autoAbs will be key to implementing effective prophylactic and therapeutic measures.


Assuntos
COVID-19 , Interferon Tipo I , Viroses , Humanos , Idoso , Autoanticorpos , Prevalência , Suscetibilidade a Doenças , Viroses/epidemiologia , Interferons
7.
Sci Rep ; 12(1): 15360, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36100643

RESUMO

The human type I interferon (IFN) system is central to innate immune defense, and is essential to protect individuals against severe viral disease. Consequently, genetic disruption of IFN signaling or effector mechanisms is extremely rare, as affected individuals typically suffer life-threatening infections at an early age. While loss-of-function (LOF) mutations in canonical JAK-STAT signaling genes (such as IFNAR2, TYK2, STAT1, STAT2 and IRF9) have previously been characterized, little is known about the consequences of mutations in other human factors required for IFN signaling. Here, we studied the impact of rare human genetic variants in the recently identified contributor to IFN-stimulated gene expression and antiviral activity, bromodomain-containing protein 9 (BRD9). Using a cell-based BRD9 knock-out and reconstitution model system, we functionally assessed 12 rare human BRD9 missense variants predicted to impair protein function, as well as 3 ultra-rare human BRD9 LOF variants that lead to truncated versions of BRD9. As compared to wild-type BRD9, none of the 12 BRD9 missense variants affected the ability of exogenous IFN to limit virus replication. In contrast, all 3 truncated BRD9 LOF variants failed to allow exogenous IFN to function efficiently, as evidenced by exacerbated replication of an IFN-sensitive virus and diminished IFN-stimulated gene expression. Thus, while no homozygous BRD9 LOF carriers have yet been identified, our results predict that such extremely rare individuals would exhibit a compromised ability to mount a fully protective IFN-mediated antiviral response. Genetic variation in BRD9 could be considered in future studies to understand the infection susceptibility of some individuals.


Assuntos
Antivirais , Interferon Tipo I , Antivirais/farmacologia , Humanos , Interferon Tipo I/genética , Transdução de Sinais , Fatores de Transcrição/genética , Replicação Viral
8.
PLoS Biol ; 20(9): e3001787, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36103486

RESUMO

Writing in PLOS Biology, Ching and colleagues show that ACE2-decorated exosomes are deployed as natural inhibitory decoys against SARS-CoV-2. High decoy levels correlate with improved patient outcomes, suggesting they directly help COVID-19 recovery and supporting the concept of successful future decoy-based therapies.


Assuntos
COVID-19 , Exossomos , Enzima de Conversão de Angiotensina 2 , Linhagem Celular , Humanos , SARS-CoV-2
9.
PLoS Biol ; 20(7): e3001709, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35788562

RESUMO

Autoantibodies neutralizing the antiviral action of type I interferons (IFNs) have been associated with predisposition to severe Coronavirus Disease 2019 (COVID-19). Here, we screened for such autoantibodies in 103 critically ill COVID-19 patients in a tertiary intensive care unit (ICU) in Switzerland. Eleven patients (10.7%), but no healthy donors, had neutralizing anti-IFNα or anti-IFNα/anti-IFNω IgG in plasma/serum, but anti-IFN IgM or IgA was rare. One patient had non-neutralizing anti-IFNα IgG. Strikingly, all patients with plasma anti-IFNα IgG also had anti-IFNα IgG in tracheobronchial secretions, identifying these autoantibodies at anatomical sites relevant for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Longitudinal analyses revealed patient heterogeneity in terms of increasing, decreasing, or stable anti-IFN IgG levels throughout the length of hospitalization. Notably, presence of anti-IFN autoantibodies in this critically ill COVID-19 cohort appeared to predict herpesvirus disease (caused by herpes simplex viruses types 1 and 2 (HSV-1/-2) and/or cytomegalovirus (CMV)), which has been linked to worse clinical outcomes. Indeed, all 7 tested COVID-19 patients with anti-IFN IgG in our cohort (100%) suffered from one or more herpesviruses, and analysis revealed that these patients were more likely to experience CMV than COVID-19 patients without anti-IFN autoantibodies, even when adjusting for age, gender, and systemic steroid treatment (odds ratio (OR) 7.28, 95% confidence interval (CI) 1.14 to 46.31, p = 0.036). As the IFN system deficiency caused by neutralizing anti-IFN autoantibodies likely directly and indirectly exacerbates the likelihood of latent herpesvirus reactivations in critically ill patients, early diagnosis of anti-IFN IgG could be rapidly used to inform risk-group stratification and treatment options. Trial Registration: ClinicalTrials.gov Identifier: NCT04410263.


Assuntos
COVID-19 , Infecções por Citomegalovirus , Herpes Simples , Interferon Tipo I , Autoanticorpos , Estado Terminal , Humanos , Imunoglobulina G , SARS-CoV-2
10.
ACS Infect Dis ; 8(7): 1265-1279, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35766385

RESUMO

There is a pressing need for host-directed therapeutics that elicit broad-spectrum antiviral activities to potentially address current and future viral pandemics. Apratoxin S4 (Apra S4) is a potent Sec61 inhibitor that prevents cotranslational translocation of secretory proteins into the endoplasmic reticulum (ER), leading to anticancer and antiangiogenic activity both in vitro and in vivo. Since Sec61 has been shown to be an essential host factor for viral proteostasis, we tested Apra S4 in cellular models of viral infection, including SARS-CoV-2, influenza A virus, and flaviviruses (Zika, West Nile, and Dengue virus). Apra S4 inhibited viral replication in a concentration-dependent manner and had high potency particularly against SARS-CoV-2 and influenza A virus, with subnanomolar activity in human cells. Characterization studies focused on SARS-CoV-2 revealed that Apra S4 impacted a post-entry stage of the viral life-cycle. Transmission electron microscopy revealed that Apra S4 blocked formation of stacked double-membrane vesicles, the sites of viral replication. Apra S4 reduced dsRNA formation and prevented viral protein production and trafficking of secretory proteins, especially the spike protein. Given the potent and broad-spectrum activity of Apra S4, further preclinical evaluation of Apra S4 and other Sec61 inhibitors as antivirals is warranted.


Assuntos
Tratamento Farmacológico da COVID-19 , Vírus da Influenza A , Infecção por Zika virus , Zika virus , Antivirais/farmacologia , Antivirais/uso terapêutico , Depsipeptídeos , Humanos , Pandemias , SARS-CoV-2 , Infecção por Zika virus/tratamento farmacológico
11.
Cell Rep ; 38(12): 110549, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35320721

RESUMO

Host interferons (IFNs) powerfully restrict viruses through the action of several hundred IFN-stimulated gene (ISG) products, many of which remain uncharacterized. Here, using RNAi screening, we identify several ISG restriction factors with previously undescribed contributions to IFN-mediated defense. Notably, RABGAP1L, a Tre2/Bub2/Cdc16 (TBC)-domain-containing protein involved in regulation of small membrane-bound GTPases, robustly potentiates IFN action against influenza A viruses (IAVs). Functional studies reveal that the catalytically active TBC domain of RABGAP1L promotes antiviral activity, and the RABGAP1L proximal interactome uncovered its association with proteins involved in endosomal sorting, maturation, and trafficking. In this regard, RABGAP1L overexpression is sufficient to disrupt endosomal function during IAV infection and restricts an early post-attachment, but pre-fusion, stage of IAV cell entry. Other RNA viruses that enter cells primarily via endocytosis are also impaired by RABGAP1L, while entry promiscuous SARS-CoV-2 is resistant. Our data highlight virus endocytosis as a key target for host defenses.


Assuntos
Antivirais , COVID-19 , Linhagem Celular , Endocitose , Humanos , SARS-CoV-2
12.
Curr Opin Virol ; 52: 211-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959082

RESUMO

Host silencing of transposable elements (TEs) is critical to prevent genome damage and inappropriate inflammation. However, new evidence suggests that a virus-infected host may re-activate TEs and co-opt them for antiviral defense. RNA-Seq and specialized bioinformatics have revealed the diversity of virus infections that induce TEs. Furthermore, studies with influenza virus have uncovered how infection-triggered changes to the SUMOylation of TRIM28, an epigenetic co-repressor, lead to TE de-repression. Importantly, there is a growing appreciation of how de-repressed TEs stimulate antiviral gene expression, either via cis-acting enhancer functions or via their recognition as viral mimetics by innate immune nucleic acid sensors (e.g. RIG-I, mda-5 and cGAS). Understanding how viruses trigger, and counteract, TE-based antiviral immunity should provide insights into pathogenic mechanisms.


Assuntos
Elementos de DNA Transponíveis , Vírus , Antivirais , Imunidade Inata , Vírus/genética
13.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34479996

RESUMO

Excessive production of viral glycoproteins during infections poses a tremendous stress potential on the endoplasmic reticulum (ER) protein folding machinery of the host cell. The host cell balances this by providing more ER resident chaperones and reducing translation. For viruses, this unfolded protein response (UPR) offers the potential to fold more glycoproteins. We postulated that viruses could have developed means to limit the inevitable ER stress to a beneficial level for viral replication. Using a relevant human pathogen, influenza A virus (IAV), we first established the determinant for ER stress and UPR induction during infection. In contrast to a panel of previous reports, we identified neuraminidase to be the determinant for ER stress induction, and not hemagglutinin. IAV relieves ER stress by expression of its nonstructural protein 1 (NS1). NS1 interferes with the host messenger RNA processing factor CPSF30 and suppresses ER stress response factors, such as XBP1. In vivo viral replication is increased when NS1 antagonizes ER stress induction. Our results reveal how IAV optimizes glycoprotein expression by balancing folding capacity.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Vírus da Influenza A/genética , Neuraminidase/metabolismo , Células A549 , Retículo Endoplasmático/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Resposta a Proteínas não Dobradas/genética , Resposta a Proteínas não Dobradas/fisiologia , Proteínas não Estruturais Virais/genética , Replicação Viral/genética
14.
EMBO Rep ; 22(10): e52823, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34397140

RESUMO

Interferon (IFN) induction of IFN-stimulated genes (ISGs) creates a formidable protective antiviral state. However, loss of appropriate control mechanisms can result in constitutive pathogenic ISG upregulation. Here, we used genome-scale loss-of-function screening to establish genes critical for IFN-induced transcription, identifying all expected members of the JAK-STAT signaling pathway and a previously unappreciated epigenetic reader, bromodomain-containing protein 9 (BRD9), the defining subunit of non-canonical BAF (ncBAF) chromatin-remodeling complexes. Genetic knockout or small-molecule-mediated degradation of BRD9 limits IFN-induced expression of a subset of ISGs in multiple cell types and prevents IFN from exerting full antiviral activity against several RNA and DNA viruses, including influenza virus, human immunodeficiency virus (HIV1), and herpes simplex virus (HSV1). Mechanistically, BRD9 acts at the level of transcription, and its IFN-triggered proximal association with the ISG transcriptional activator, STAT2, suggests a functional localization at selected ISG promoters. Furthermore, BRD9 relies on its intact acetyl-binding bromodomain and unique ncBAF scaffolding interaction with GLTSCR1/1L to promote IFN action. Given its druggability, BRD9 is an attractive target for dampening ISG expression under certain autoinflammatory conditions.


Assuntos
Antivirais , Interferons , Antivirais/farmacologia , Expressão Gênica , Humanos , Fator de Transcrição STAT2/genética , Fator de Transcrição STAT2/metabolismo , Fatores de Transcrição/genética
15.
J Gen Virol ; 102(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34319869

RESUMO

Rapid repurposing of existing drugs as new therapeutics for COVID-19 has been an important strategy in the management of disease severity during the ongoing SARS-CoV-2 pandemic. Here, we used high-throughput docking to screen 6000 compounds within the DrugBank library for their potential to bind and inhibit the SARS-CoV-2 3 CL main protease, a chymotrypsin-like enzyme that is essential for viral replication. For 19 candidate hits, parallel in vitro fluorescence-based protease-inhibition assays and Vero-CCL81 cell-based SARS-CoV-2 replication-inhibition assays were performed. One hit, diclazuril (an investigational anti-protozoal compound), was validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro (IC50 value of 29 µM) and modestly inhibited SARS-CoV-2 replication in Vero-CCL81 cells. Another hit, lenvatinib (approved for use in humans as an anti-cancer treatment), could not be validated as a SARS-CoV-2 3 CL main protease inhibitor in vitro, but serendipitously exhibited a striking functional synergy with the approved nucleoside analogue remdesivir to inhibit SARS-CoV-2 replication, albeit this was specific to Vero-CCL81 cells. Lenvatinib is a broadly-acting host receptor tyrosine kinase (RTK) inhibitor, but the synergistic effect with remdesivir was not observed with other approved RTK inhibitors (such as pazopanib or sunitinib), suggesting that the mechanism-of-action is independent of host RTKs. Furthermore, time-of-addition studies revealed that lenvatinib/remdesivir synergy probably targets SARS-CoV-2 replication subsequent to host-cell entry. Our work shows that combining computational and cellular screening is a means to identify existing drugs with repurposing potential as antiviral compounds. Future studies could be aimed at understanding and optimizing the lenvatinib/remdesivir synergistic mechanism as a therapeutic option.


Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Quimases/antagonistas & inibidores , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Alanina/farmacologia , Animais , Antivirais/farmacologia , COVID-19/enzimologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/farmacologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade
16.
Nat Nanotechnol ; 16(8): 918-925, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34083772

RESUMO

Minimizing the spread of viruses in the environment is the first defence line when fighting outbreaks and pandemics, but the current COVID-19 pandemic demonstrates how difficult this is on a global scale, particularly in a sustainable and environmentally friendly way. Here we introduce and develop a sustainable and biodegradable antiviral filtration membrane composed of amyloid nanofibrils made from food-grade milk proteins and iron oxyhydroxide nanoparticles synthesized in situ from iron salts by simple pH tuning. Thus, all the membrane components are made of environmentally friendly, non-toxic and widely available materials. The membrane has outstanding efficacy against a broad range of viruses, which include enveloped, non-enveloped, airborne and waterborne viruses, such as SARS-CoV-2, H1N1 (the influenza A virus strain responsible for the swine flu pandemic in 2009) and enterovirus 71 (a non-enveloped virus resistant to harsh conditions, such as highly acidic pH), which highlights a possible role in fighting the current and future viral outbreaks and pandemics.


Assuntos
Amiloide/química , Antivirais/farmacologia , Compostos Férricos/química , Filtros Microporos , Nanopartículas/química , Amiloide/farmacologia , Antivirais/química , Compostos Férricos/farmacologia , Humanos , Lactoglobulinas/química , Filtros Microporos/virologia , Inativação de Vírus/efeitos dos fármacos , Vírus/classificação , Vírus/efeitos dos fármacos , Vírus/isolamento & purificação , Purificação da Água
17.
PLoS Pathog ; 17(6): e1009644, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34138976

RESUMO

Coronavirus infection induces the unfolded protein response (UPR), a cellular signalling pathway composed of three branches, triggered by unfolded proteins in the endoplasmic reticulum (ER) due to high ER load. We have used RNA sequencing and ribosome profiling to investigate holistically the transcriptional and translational response to cellular infection by murine hepatitis virus (MHV), often used as a model for the Betacoronavirus genus to which the recently emerged SARS-CoV-2 also belongs. We found the UPR to be amongst the most significantly up-regulated pathways in response to MHV infection. To confirm and extend these observations, we show experimentally the induction of all three branches of the UPR in both MHV- and SARS-CoV-2-infected cells. Over-expression of the SARS-CoV-2 ORF8 or S proteins alone is itself sufficient to induce the UPR. Remarkably, pharmacological inhibition of the UPR greatly reduced the replication of both MHV and SARS-CoV-2, revealing the importance of this pathway for successful coronavirus replication. This was particularly striking when both IRE1α and ATF6 branches of the UPR were inhibited, reducing SARS-CoV-2 virion release (~1,000-fold). Together, these data highlight the UPR as a promising antiviral target to combat coronavirus infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Vírus da Hepatite Murina/efeitos dos fármacos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Fator 6 Ativador da Transcrição/metabolismo , Animais , Antivirais/uso terapêutico , Linhagem Celular , Chlorocebus aethiops , Sistemas de Liberação de Medicamentos , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Camundongos , Proteínas Serina-Treonina Quinases/metabolismo , RNA-Seq , Células Vero , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
18.
Elife ; 102021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34003114

RESUMO

When culturing SARS-CoV-2 in the laboratory it is vital to avoid deletions in the gene for the spike protein that could affect the interpretation of experiments.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , Chlorocebus aethiops , Humanos , SARS-CoV-2
19.
Viruses ; 13(3)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33806893

RESUMO

SUMOylation is a highly dynamic ubiquitin-like post-translational modification that is essential for cells to respond to and resolve various genotoxic and proteotoxic stresses. Virus infections also constitute a considerable stress scenario for cells, and recent research has started to uncover the diverse roles of SUMOylation in regulating virus replication, not least by impacting antiviral defenses. Here, we review some of the key findings of this virus-host interplay, and discuss the increasingly important contribution that large-scale, unbiased, proteomic methodologies are making to discoveries in this field. We highlight the latest proteomic technologies that have been specifically developed to understand SUMOylation dynamics in response to cellular stresses, and comment on how these techniques might be best applied to dissect the biology of SUMOylation during innate immunity. Furthermore, we showcase a selection of studies that have already used SUMO proteomics to reveal novel aspects of host innate defense against viruses, such as functional cross-talk between SUMO proteins and other ubiquitin-like modifiers, viral antagonism of SUMO-modified antiviral restriction factors, and an infection-triggered SUMO-switch that releases endogenous retroelement RNAs to stimulate antiviral interferon responses. Future research in this area has the potential to provide new and diverse mechanistic insights into host immune defenses.


Assuntos
Interações entre Hospedeiro e Microrganismos , Imunidade Inata , Sumoilação , Viroses , Humanos , Proteômica , Viroses/imunologia , Viroses/virologia , Replicação Viral
20.
J Exp Med ; 218(6)2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33882122

RESUMO

The disease severity of influenza is highly variable in humans, and one genetic determinant behind these differences is the IFITM3 gene. As an effector of the interferon response, IFITM3 potently blocks cytosolic entry of influenza A virus (IAV). Here, we reveal a novel level of inhibition by IFITM3 in vivo: We show that incorporation of IFITM3 into IAV particles competes with incorporation of viral hemagglutinin (HA). Decreased virion HA levels did not reduce infectivity, suggesting that high HA density on IAV virions may be an antagonistic strategy used by the virus to prevent direct inhibition. However, we found that IFITM3-mediated reduction in HA content sensitizes IAV to antibody-mediated neutralization. Mathematical modeling predicted that this effect decreases and delays peak IAV titers, and we show that, indeed, IFITM3-mediated sensitization of IAV to antibody-mediated neutralization impacts infection outcome in an in vivo mouse model. Overall, our data describe a previously unappreciated interplay between the innate effector IFITM3 and the adaptive immune response.


Assuntos
Anticorpos Neutralizantes/imunologia , Vírus da Influenza A/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Células A549 , Imunidade Adaptativa/imunologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cães , Feminino , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Influenza Humana/imunologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...