Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 302: 122357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37879188

RESUMO

Recombinant bone morphogenetic protein-2 (BMP-2) is a potent osteoinductive growth factor that can promote bone regeneration for challenging skeletal repair and even for ectopic bone formation in spinal fusion procedures. However, serious clinical side effects related to supraphysiological dosing highlight the need for advances in novel biomaterials that can significantly reduce the amount of this biologic. Novel biomaterials could not only reduce clinical side effects but also expand the indications for use of BMP-2, while at the same time lowering the cost of such procedures. To achieve this objective, we have developed a slurry containing a known supramolecular polymer that potentiates BMP-2 signaling and porous collagen microparticles. This slurry exhibits a paste-like consistency that stiffens into an elastic gel upon implantation making it ideal for minimally invasive procedures. We carried out in vivo evaluation of the novel biomaterial in the rabbit posterolateral spine fusion model, and discovered efficacy at unprecedented ultra-low BMP-2 doses (5 µg/implant). This dose reduces the growth factor requirement by more than 100-fold relative to current clinical products. This observation is significant given that spinal fusion involves ectopic bone formation and the rabbit model is known to be predictive of human efficacy. We expect the novel biomaterial can expand BMP-2 indications for difficult cases requiring large volumes of bone formation or involving patients with underlying conditions that compromise bone regeneration.


Assuntos
Proteína Morfogenética Óssea 2 , Fusão Vertebral , Animais , Humanos , Coelhos , Proteína Morfogenética Óssea 2/farmacologia , Fator de Crescimento Transformador beta , Regeneração Óssea , Colágeno , Materiais Biocompatíveis , Fusão Vertebral/métodos
2.
J Bone Joint Surg Am ; 103(11): 984-991, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33759484

RESUMO

BACKGROUND: After spinal surgery and other orthopaedic procedures, most patients receive opioids for pain, leading to potential complications such as pseudarthrosis and opioid abuse associated with long-term use. As an alternative, the endocannabinoid system has been shown to have antinociceptive activity, while contributing to bone homeostasis via the CB1 and CB2 cannabinoid receptors. This study evaluates the impact of the cannabinoid receptor agonist WIN55,212-2 (WIN55) on osteogenic differentiation in vitro as well as bone regeneration and spinal fusion in a preclinical rat model. METHODS: Primary rat bone marrow stromal cells were cultured in standard or osteogenic media and exposed to vehicle alone or WIN55. Runx2 and Alkaline phosphatase (Alpl) were quantified via qPCR (quantitative real-time polymerase chain reaction), followed by assessment of ALP activity and matrix mineralization. For in vivo evaluation, 45 female Sprague Dawley rats (n = 15 per group) underwent L4-L5 posterolateral spinal fusion with bilateral placement of collagen scaffolds preloaded with low-dose rhBMP-2 (recombinant human bone morphogenetic protein-2; 0.5 µg/implant). Postoperatively, rats received the vehicle alone or 0.5 or 2.5 mg/kg WIN55 via daily intraperitoneal injections for 5 days. Bone regeneration and spinal fusion were assessed using radiography, manual palpation-based fusion scoring, microcomputed tomography imaging, and histology. RESULTS: mRNA expression levels of Runx2 and Alp were similar among cells treated with vehicle alone and WIN55. Likewise, exposure to WIN55 did not inhibit ALP activity or bone matrix mineralization. In this animal model, no significant differences were found among groups with regard to mean fusion score, fusion rate, or new bone volume. CONCLUSIONS: WIN55 showed no adverse impact on osteogenic differentiation, bone regeneration, and spinal fusion. This supports that cannabinoid receptor agonists should be further investigated as a potential alternative approach for postoperative analgesia following spinal fusion and other orthopaedic procedures requiring bone-healing. CLINICAL RELEVANCE: The identification of alternative treatments for postoperative pain following orthopaedic surgical procedures is crucial in combating the ongoing opioid abuse crisis. The endocannabinoid system may represent a viable alternative target for addressing orthopaedic postoperative pain.


Assuntos
Benzoxazinas/farmacologia , Regeneração Óssea/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Morfolinas/farmacologia , Naftalenos/farmacologia , Osteogênese/efeitos dos fármacos , Fusão Vertebral , Animais , Proteína Morfogenética Óssea 2/administração & dosagem , Feminino , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Período Pós-Operatório , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/administração & dosagem , Alicerces Teciduais , Tomografia Computadorizada por Raios X , Fator de Crescimento Transformador beta/administração & dosagem
3.
Tissue Eng Part A ; 27(1-2): 26-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32098585

RESUMO

We previously developed a recombinant growth factor-free, three-dimensional (3D)-printed material comprising hydroxyapatite (HA) and demineralized bone matrix (DBM) for bone regeneration. This material has demonstrated the capacity to promote re-mineralization of the DBM particles within the scaffold struts and shows potential to promote successful spine fusion. Here, we investigate the role of geometry and architecture in osteointegration, vascularization, and facilitation of spine fusion in a preclinical model. Inks containing HA and DBM particles in a poly(lactide-co-glycolide) elastomer were 3D-printed into scaffolds with varying relative strut angles (90° vs. 45° advancing angle), macropore size (0 µm vs. 500 µm vs. 1000 µm), and strut alignment (aligned vs. offset). The following configurations were compared with scaffolds containing no macropores: 90°/500 µm/aligned, 45°/500 µm/aligned, 90°/1000 µm/aligned, 45°/1000 µm/aligned, 90°/1000 µm/offset, and 45°/1000 µm/offset. Eighty-four female Sprague-Dawley rats underwent spine fusion with bilateral placement of the various scaffold configurations (n = 12/configuration). Osteointegration and vascularization were assessed by using microComputed Tomography and histology, and spine fusion was assessed via blinded manual palpation. The 45°/1000 µm scaffolds with aligned struts achieved the highest average fusion score (1.61/2) as well as the highest osteointegration score. Both the 45°/1000 µm/aligned and 90°/1000 µm/aligned scaffolds elicited fusion rates of 100%, which was significantly greater than the 45°/500 µm/aligned iteration (p < 0.05). All porous scaffolds were fully vascularized, with blood vessels present in every macropore. Vessels were also observed extending from the native transverse process bone, through the protrusions of new bone, and into the macropores of the scaffolds. When viewed independently, scaffolds printed with relative strut angles of 45° and 90° each allowed for osteointegration sufficient to stabilize the spine at L4-L5. Within those parameters, a pore size of 500 µm or greater was generally sufficient to achieve unilateral fusion. However, our results suggest that scaffolds printed with the larger pore size and with aligned struts at an advancing angle of 45° may represent the optimal configuration to maximize osteointegration and fusion capacity. Overall, this work suggests that the HA/DBM composite scaffolds provide a conducive environment for bone regeneration as well as vascular infiltration. This technology, therefore, represents a novel, growth-factor-free biomaterial with significant potential as a bone graft substitute for use in spinal surgery. Impact statement We previously developed a recombinant growth factor-free, three-dimensional (3D)-printed composite material comprising hydroxyapatite and demineralized bone matrix for bone regeneration. Here, we identify a range of 3D geometric and architectural parameters that support the preclinical success of the scaffold, including efficient vascularization, osteointegration, and, ultimately, spinal fusion. Our results suggest that this material holds great promise as a clinically translatable biomaterial for use as a bone graft substitute in orthopedic procedures requiring bone regeneration.


Assuntos
Fusão Vertebral , Animais , Feminino , Impressão Tridimensional , Ratos , Ratos Sprague-Dawley , Alicerces Teciduais , Microtomografia por Raio-X
4.
Tissue Eng Part A ; 26(3-4): 157-166, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31469055

RESUMO

Although numerous spinal biologics are commercially available, a cost-effective and safe bone graft substitute material for spine fusion has yet to be proven. In this study, "3D-Paints" containing varying volumetric ratios of hydroxyapatite (HA) and human demineralized bone matrix (DBM) in a poly(lactide-co-glycolide) elastomer were three-dimensional (3D) printed into scaffolds to promote osteointegration in rats, with an end goal of spine fusion without the need for recombinant growth factor. Spine fusion was evaluated by manual palpation, and osteointegration and de novo bone formation within scaffold struts were evaluated by laboratory and synchrotron microcomputed tomography and histology. The 3:1 HA:DBM composite achieved the highest mean fusion score and fusion rate (92%), which was significantly greater than the 3D printed DBM-only scaffold (42%). New bone was identified extending from the host transverse processes into the scaffold macropores, and osteointegration scores correlated with successful fusion. Strikingly, the combination of HA and DBM resulted in the growth of bone-like spicules within the DBM particles inside scaffold struts. These spicules were not observed in DBM-only scaffolds, suggesting that de novo spicule formation requires both HA and DBM. Collectively, our work suggests that this recombinant growth factor-free composite shows promise to overcome the limitations of currently used bone graft substitutes for spine fusion. Impact Statement Currently, there exists a no safe, yet highly effective, bone graft substitute that is well accepted for use in spine fusion procedures. With this work, we show that a three-dimensional printed scaffold containing osteoconductive hydroxyapatite and osteoinductive demineralized bone matrix that promotes new bone spicule formation, osteointegration, and successful fusion (stabilization) when implemented in a preclinical model of spine fusion. Our study suggests that this material shows promise as a recombinant growth factor-free bone graft substitute that could safely promote high rates of successful fusion and improve patient care.


Assuntos
Substitutos Ósseos/química , Impressão Tridimensional , Fusão Vertebral/métodos , Animais , Durapatita/química , Humanos , Ratos , Ratos Sprague-Dawley , Microtomografia por Raio-X
5.
Med Devices (Auckl) ; 12: 461-467, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814779

RESUMO

PURPOSE: The purpose of this study is to identify adverse events (device- and patient-related) associated with thoracic aortic stent graft systems and their timing post-procedure. MATERIALS AND METHODS: The Food and Drug Administration's Manufacturer and User Facility Device Experience (FDA-MAUDE) voluntary database was searched for Thoracic Aortic Endovascular Repair (TEVAR) devices reported over the course of 1 year (January 1, 2014 to December 31, 2014). The data abstracted included the indication for treatment, device used, and adverse events. RESULTS: During 2014, there were 334 original submissions to the FDA-MAUDE database describing 371 adverse events regarding TEVAR devices that met inclusion criteria for this study. All submissions were from manufacturers, and none were from physicians. The most common pathologies treated were thoracic aortic aneurysm (67.6%) and type B aortic dissection (25.1%). The most frequently reported intraoperative, early postoperative (<30 days), and late postoperative (>30 days) events overall were technical device failure, neurologic complications (stroke, paraplegia), and endoleak, respectively. Of note, there were descriptions of retained deployment materials, late graft infections, and aorto-visceral fistula formation up to 3 years postoperatively. CONCLUSION: The MAUDE database is a valuable repository for complications and device failures that are not otherwise in the published literature and submitted by manufacturers relating to this relatively new technology.

6.
Minim Invasive Surg ; 2018: 4760769, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29805806

RESUMO

3D printing (3DP) technology continues to gain popularity among medical specialties as a useful tool to improve patient care. The field of spine surgery is one discipline that has utilized this; however, information regarding the use of 3DP in minimally invasive spine surgery (MISS) is limited. 3D printing is currently being utilized in spine surgery to create biomodels, hardware templates and guides, and implants. Minimally invasive spine surgeons have begun to adopt 3DP technology, specifically with the use of biomodeling to optimize preoperative planning. Factors limiting widespread adoption of 3DP include increased time, cost, and the limited range of diagnoses in which 3DP has thus far been utilized. 3DP technology has become a valuable tool utilized by spine surgeons, and there are limitless directions in which this technology can be applied to minimally invasive spine surgery.

7.
J Oncol Pract ; 11(1): e59-65, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-25466707

RESUMO

PURPOSE: Approximately 18,500 persons are diagnosed with malignant glioma in the United States annually. Few studies have investigated the comprehensive economic costs. We reviewed the literature to examine costs to patients with malignant glioma and their families, payers, and society. METHODS: A total of 18 fully extracted studies were included. Data were collected on direct and indirect costs, and cost estimates were converted to US dollars using the conversion rate calculated from the study's publication date, and updated to 2011 values after adjustment for inflation. A standardized data abstraction form was used. Data were extracted by one reviewer and checked by another. RESULTS: Before approval of effective chemotherapeutic agents for malignant gliomas, estimated total direct medical costs in the United States for surgery and radiation therapy per patient ranged from $50,600 to $92,700. The addition of temozolomide (TMZ) and bevacizumab to glioblastoma treatment regimens has resulted in increased overall costs for glioma care. Although health care costs are now less front-loaded, they have increased over the course of illness. Analysis using a willingness-to-pay threshold of $50,000 per quality-adjusted life-year suggests that the benefits of TMZ fall on the edge of acceptable therapies. Furthermore, indirect medical costs, such as productivity losses, are not trivial. CONCLUSION: With increased chemotherapy use for malignant glioma, the paradigm for treatment and associated out-of-pocket and total medical costs continue to evolve. Larger out-of-pocket costs may influence the choice of chemotherapeutic agents, the economic implications of which should be evaluated prospectively.


Assuntos
Neoplasias Encefálicas/economia , Glioma/economia , Neoplasias Encefálicas/terapia , Canadá , Efeitos Psicossociais da Doença , Custos e Análise de Custo , Dacarbazina/análogos & derivados , Dacarbazina/economia , Dacarbazina/uso terapêutico , Tratamento Farmacológico/economia , Europa (Continente) , Glioma/terapia , Humanos , Radioterapia/economia , Temozolomida , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...