Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-513619

RESUMO

Waning immunity following mRNA vaccination and the emergence of SARS-CoV-2 variants has led to reduced mRNA vaccine efficacy against both symptomatic infection and severe disease. Bivalent mRNA boosters expressing the Omicron BA.5 and ancestral WA1/2020 Spike proteins have been developed and approved, because BA.5 is currently the dominant SARS-CoV-2 variant and substantially evades neutralizing antibodies (NAbs). Our data show that BA.5 NAb titers were comparable following monovalent and bivalent mRNA boosters.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-479285

RESUMO

BackgroundThe rapid spread of the SARS-CoV-2 Omicron (B.1.1.529) variant, including in highly vaccinated populations, has raised important questions about the efficacy of current vaccines. Immune correlates of vaccine protection against Omicron are not known. Methods30 cynomolgus macaques were immunized with homologous and heterologous prime-boost regimens with the mRNA-based BNT162b2 vaccine and the adenovirus vector-based Ad26.COV2.S vaccine. Following vaccination, animals were challenged with the SARS-CoV-2 Omicron variant by the intranasal and intratracheal routes. ResultsOmicron neutralizing antibodies were observed following the boost immunization and were higher in animals that received BNT162b2, whereas Omicron CD8+ T cell responses were higher in animals that received Ad26.COV2.S. Following Omicron challenge, sham controls showed more prolonged virus in nasal swabs than in bronchoalveolar lavage. Vaccinated macaques demonstrated rapid control of virus in bronchoalveolar lavage, and most vaccinated animals also controlled virus in nasal swabs, showing that current vaccines provide substantial protection against Omicron in this model. However, vaccinated animals that had moderate levels of Omicron neutralizing antibodies but negligible Omicron CD8+ T cell responses failed to control virus in the upper respiratory tract. Virologic control correlated with both antibody and T cell responses. ConclusionsBNT162b2 and Ad26.COV2.S provided robust protection against high-dose challenge with the SARS-CoV-2 Omicron variant in macaques. Protection against this highly mutated SARS-CoV-2 variant correlated with both humoral and cellular immune responses.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22268634

RESUMO

The highly mutated SARS-CoV-2 Omicron (B.1.1.529) variant has been shown to evade a substantial fraction of neutralizing antibody responses elicited by current vaccines that encode the WA1/2020 Spike immunogen1, resulting in increased breakthrough infections and reduced vaccine efficacy. Cellular immune responses, particularly CD8+ T cell responses, are likely critical for protection against severe SARS-CoV-2 disease2-6. Here we show that cellular immunity induced by current SARS-CoV-2 vaccines is highly cross-reactive against the SARS-CoV-2 Omicron variant. Individuals who received Ad26.COV2.S or BNT162b2 vaccines demonstrated durable CD8+ and CD4+ T cell responses that showed extensive cross-reactivity against both the Delta and Omicron variants, including in central and effector memory cellular subpopulations. Median Omicron-specific CD8+ T cell responses were 82-84% of WA1/2020-specific CD8+ T cell responses. These data suggest that current vaccines may provide considerable protection against severe disease with the SARS-CoV-2 Omicron variant despite the substantial reduction of neutralizing antibody responses.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267198

RESUMO

The rapid spread of the highly mutated SARS-CoV-2 Omicron variant has raised substantial concerns about the protective efficacy of currently available vaccines. We assessed Omicron-specific humoral and cellular immune responses in 65 individuals who were vaccinated with two immunizations of BNT162b2 and were boosted after at least 6 months with either Ad26.COV2.S (Johnson & Johnson; N=41) or BNT162b2 (Pfizer; N=24) (Table S1). O_TBL View this table: org.highwire.dtl.DTLVardef@41c8baorg.highwire.dtl.DTLVardef@e14f5forg.highwire.dtl.DTLVardef@21ea87org.highwire.dtl.DTLVardef@ac4522org.highwire.dtl.DTLVardef@1eed52b_HPS_FORMAT_FIGEXP M_TBL O_FLOATNOTable S1.C_FLOATNO O_TABLECAPTIONCharacteristics of the study population C_TABLECAPTION C_TBL

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...