Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Retina ; 44(5): 916-922, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38207176

RESUMO

PURPOSE: To determine whether universal masking during COVID-19 altered rate and outcomes of postinjection endophthalmitis. METHODS: Retrospective, single-site, comparative, cohort study. Eyes diagnosed with endophthalmitis within 4 weeks of intravitreal injection at the University of Michigan from August 1, 2012, to November 15, 2022, were identified. Cases were considered "masking" between March 15, 2020, and November 15, 2022. Endophthalmitis rate, visual acuity, and microbial spectrum were investigated. RESULTS: There were 20 postinjection endophthalmitis cases out of 72,194 injections (0.028%; one in 3,571 injections) premasking and 10 of 38,962 with universal masking (0.026%; one in 3,846 injections; odds ratio 0.9; 95% [confidence interval]: 0.4-2.0). Referral from the community was unchanged with 32 cases referred premasking (0.35 cases/month) and 10 cases with masking (0.31 cases/month). Presenting mean the logarithm of the minimum angle of resolution visual acuity with masking of all postinjection endophthalmitis cases trended worse (2.35 ± 0.40) compared with premasking (2.09 ± 0.48; P = 0.05) with light perception visual acuity more common with masking (31.6% vs. 10.9%, P = 0.06). There was no delay in time from procedure to initial treatment ( P = 0.36), no difference in the rate of initial treatment with tap and inject (T/I), and similar positive-culture rates ( P = 0.77) between the cohorts. Visual acuity after 30 days of follow-up was clinically unchanged (∼20/500 vs. 20/400; P = 0.59). CONCLUSION: Universal masking had no effect on postinjection endophthalmitis rate or on the rate of culture-positive cases. Although presenting visual acuity appeared worse with masking, this was not statistically significant, and current treatment paradigms resulted in similar visual outcomes.


Assuntos
COVID-19 , Endoftalmite , Infecções Oculares Bacterianas , Injeções Intravítreas , Acuidade Visual , Humanos , Endoftalmite/epidemiologia , Endoftalmite/diagnóstico , Injeções Intravítreas/efeitos adversos , Estudos Retrospectivos , Masculino , Feminino , Idoso , Infecções Oculares Bacterianas/epidemiologia , Infecções Oculares Bacterianas/microbiologia , Infecções Oculares Bacterianas/tratamento farmacológico , COVID-19/epidemiologia , SARS-CoV-2 , Inibidores da Angiogênese/administração & dosagem , Centros de Atenção Terciária , Pessoa de Meia-Idade , Máscaras/efeitos adversos , Idoso de 80 Anos ou mais
3.
Orbit ; : 1-4, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087973

RESUMO

Both granulomatous polyangiitis (GPA) and Crohn's disease (CD) can cause orbital inflammation though rarely coincide and can often be differentiated by presenting features and histological findings. Here, we report the clinical and therapeutic course of a 14-year-old White male with binocular diplopia caused by orbital myositis. Imaging and biopsy obtained at presentation revealed necrosis and necrotizing granulomatous vasculitis suspicious for GPA. He subsequently developed gastrointestinal symptoms and terminal ileitis consistent with CD. Orbital symptoms responded well to high-dose steroids and remained quiet on methotrexate maintenance therapy. While clinical history, thorough physical exam, and complete laboratory work-up are essential in the management of pediatric orbital myositis, orbital biopsy can prove critical for diagnosis and suitable treatment strategy.

4.
Am J Physiol Endocrinol Metab ; 324(3): E251-E267, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36696598

RESUMO

The autonomic nervous system regulates pancreatic function. Islet capillaries are essential for the extension of axonal projections into islets, and both of these structures are important for appropriate islet hormone secretion. Because beta cells provide important paracrine cues for islet glucagon secretion and neurovascular development, we postulated that beta cell loss in type 1 diabetes (T1D) would lead to a decline in intraislet capillaries and reduction of islet innervation, possibly contributing to abnormal glucagon secretion. To define morphological characteristics of capillaries and nerve fibers in islets and acinar tissue compartments, we analyzed neurovascular assembly across the largest cohort of T1D and normal individuals studied thus far. Because innervation has been studied extensively in rodent models of T1D, we also compared the neurovascular architecture between mouse and human pancreas and assembled transcriptomic profiles of molecules guiding islet angiogenesis and neuronal development. We found striking interspecies differences in islet neurovascular assembly but relatively modest differences at transcriptome level, suggesting that posttranscriptional regulation may be involved in this process. To determine whether islet neurovascular arrangement is altered after beta cell loss in T1D, we compared pancreatic tissues from non-diabetic, recent-onset T1D (<10-yr duration), and longstanding T1D (>10-yr duration) donors. Recent-onset T1D showed greater islet and acinar capillary density compared to non-diabetic and longstanding T1D donors. Both recent-onset and longstanding T1D had greater islet nerve fiber density compared to non-diabetic donors. We did not detect changes in sympathetic axons in either T1D cohort. Additionally, nerve fibers overlapped with extracellular matrix (ECM), supporting its role in the formation and function of axonal processes. These results indicate that pancreatic capillaries and nerve fibers persist in T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components.NEW & NOTEWORTHY Defining the neurovascular architecture in the pancreas of individuals with type 1 diabetes (T1D) is crucial to understanding the mechanisms of dysregulated glucagon secretion. In the largest T1D cohort of biobanked tissues analyzed to date, we found that pancreatic capillaries and nerve fibers persist in human T1D despite beta cell loss, suggesting that alpha cell secretory changes may be decoupled from neurovascular components. Because innervation has been studied extensively in rodent T1D models, our studies also provide the first rigorous direct comparisons of neurovascular assembly in mouse and human, indicating dramatic interspecies differences.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Ilhotas Pancreáticas , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Ilhotas Pancreáticas/metabolismo , Glucagon/metabolismo , Capilares/metabolismo , Células Secretoras de Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fibras Nervosas/metabolismo
5.
J AAPOS ; 26(5): 273-275, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36113695

RESUMO

Coronavirus disease 2019 (COVID-19) is a highly virulent multisystem disease caused by the SARS-CoV-2 virus. Symptoms of COVID-19 infection commonly include fever, malaise, cough, and shortness of breath. Numerous manifestations affecting nearly every organ system have been described. Ophthalmic manifestations, though rare, have been reported, including, most commonly, conjunctivitis in both adults and children, which often occurs as part of a multisystem inflammatory syndrome in children. However, pediatric ocular findings of COVID-19 are poorly understood. We present a case of acquired Brown syndrome in a child following COVID-19 infection.


Assuntos
COVID-19 , Estrabismo , Adulto , Criança , Humanos , Conjuntivite/diagnóstico , Conjuntivite/etiologia , COVID-19/complicações , SARS-CoV-2 , Estrabismo/diagnóstico , Estrabismo/etiologia
6.
J Endocr Soc ; 5(12): bvab162, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34870058

RESUMO

Clinical and pathologic heterogeneity in type 1 diabetes is increasingly being recognized. Findings in the islets and pancreas of a 22-year-old male with 8 years of type 1 diabetes were discordant with expected results and clinical history (islet autoantibodies negative, hemoglobin A1c 11.9%) and led to comprehensive investigation to define the functional, molecular, genetic, and architectural features of the islets and pancreas to understand the cause of the donor's diabetes. Examination of the donor's pancreatic tissue found substantial but reduced ß-cell mass with some islets devoid of ß cells (29.3% of 311 islets) while other islets had many ß cells. Surprisingly, isolated islets from the donor pancreas had substantial insulin secretion, which is uncommon for type 1 diabetes of this duration. Targeted and whole-genome sequencing and analysis did not uncover monogenic causes of diabetes but did identify high-risk human leukocyte antigen haplotypes and a genetic risk score suggestive of type 1 diabetes. Further review of pancreatic tissue found islet inflammation and some previously described α-cell molecular features seen in type 1 diabetes. By integrating analysis of isolated islets, histological evaluation of the pancreas, and genetic information, we concluded that the donor's clinical insulin deficiency was most likely the result autoimmune-mediated ß-cell loss but that the constellation of findings was not typical for type 1 diabetes. This report highlights the pathologic and functional heterogeneity that can be present in type 1 diabetes.

7.
JCI Insight ; 6(18)2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34428183

RESUMO

Islet-enriched transcription factors (TFs) exert broad control over cellular processes in pancreatic α and ß cells, and changes in their expression are associated with developmental state and diabetes. However, the implications of heterogeneity in TF expression across islet cell populations are not well understood. To define this TF heterogeneity and its consequences for cellular function, we profiled more than 40,000 cells from normal human islets by single-cell RNA-Seq and stratified α and ß cells based on combinatorial TF expression. Subpopulations of islet cells coexpressing ARX/MAFB (α cells) and MAFA/MAFB (ß cells) exhibited greater expression of key genes related to glucose sensing and hormone secretion relative to subpopulations expressing only one or neither TF. Moreover, all subpopulations were identified in native pancreatic tissue from multiple donors. By Patch-Seq, MAFA/MAFB-coexpressing ß cells showed enhanced electrophysiological activity. Thus, these results indicate that combinatorial TF expression in islet α and ß cells predicts highly functional, mature subpopulations.


Assuntos
Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Adulto , Fenômenos Eletrofisiológicos , Expressão Gênica , Células Secretoras de Glucagon/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/metabolismo , Pessoa de Meia-Idade , Análise de Sequência de RNA , Análise de Célula Única , Transcriptoma , Adulto Jovem
8.
JCI Insight ; 5(10)2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32352931

RESUMO

Pancreatic islets secrete insulin from ß cells and glucagon from α cells, and dysregulated secretion of these hormones is a central component of diabetes. Thus, an improved understanding of the pathways governing coordinated ß and α cell hormone secretion will provide insight into islet dysfunction in diabetes. However, the 3D multicellular islet architecture, essential for coordinated islet function, presents experimental challenges for mechanistic studies of intracellular signaling pathways in primary islet cells. Here, we developed an integrated approach to study the function of primary human islet cells using genetically modified pseudoislets that resemble native islets across multiple parameters. Further, we developed a microperifusion system that allowed synchronous acquisition of GCaMP6f biosensor signal and hormone secretory profiles. We demonstrate the utility of this experimental approach by studying the effects of Gi and Gq GPCR pathways on insulin and glucagon secretion by expressing the designer receptors exclusively activated by designer drugs (DREADDs) hM4Di or hM3Dq. Activation of Gi signaling reduced insulin and glucagon secretion, while activation of Gq signaling stimulated glucagon secretion but had both stimulatory and inhibitory effects on insulin secretion, which occur through changes in intracellular Ca2+. The experimental approach of combining pseudoislets with a microfluidic system allowed the coregistration of intracellular signaling dynamics and hormone secretion and demonstrated differences in GPCR signaling pathways between human ß and α cells.


Assuntos
Técnicas Biossensoriais , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Insulina/metabolismo , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Feminino , Células Secretoras de Glucagon/citologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Masculino
9.
Cell Stem Cell ; 25(2): 273-289.e5, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374199

RESUMO

Human monogenic diabetes, caused by mutations in genes involved in beta cell development and function, has been a challenge to study because multiple mouse models have not fully recapitulated the human disease. Here, we use genome edited human embryonic stem cells to understand the most common form of monogenic diabetes, MODY3, caused by mutations in the transcription factor HNF1A. We found that HNF1A is necessary to repress an alpha cell gene expression signature, maintain endocrine cell function, and regulate cellular metabolism. In addition, we identified the human-specific long non-coding RNA, LINKA, as an HNF1A target necessary for normal mitochondrial respiration. These findings provide a possible explanation for the species difference in disease phenotypes observed with HNF1A mutations and offer mechanistic insights into how the HNF1A gene may also influence type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Células-Tronco Embrionárias Humanas/fisiologia , Pâncreas/patologia , Respiração Celular , Células Cultivadas , Diabetes Mellitus Tipo 2/patologia , Regulação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/genética , Humanos , Proteínas do Leite , Mutação/genética , Pâncreas/fisiologia , Fenótipo , RNA Longo não Codificante/genética
10.
Diabetologia ; 62(6): 1036-1047, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30955045

RESUMO

AIMS/HYPOTHESIS: The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases. METHODS: We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 µm) of regions of interest and leads to reduced time requirements for data acquisition. RESULTS: MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation. CONCLUSIONS/INTERPRETATION: The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.


Assuntos
Ilhotas Pancreáticas/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Imunofluorescência , Gangliosídeos/análise , Humanos , Imuno-Histoquímica , Camundongos , Pâncreas
11.
Diabetes ; 68(5): 988-1001, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30833470

RESUMO

Type 1 diabetes studies consistently generate data showing islet ß-cell dysfunction and T cell-mediated anti-ß-cell-specific autoimmunity. To explore the pathogenesis, we interrogated the ß-cell transcriptomes from donors with and without type 1 diabetes using both bulk-sorted and single ß-cells. Consistent with immunohistological studies, ß-cells from donors with type 1 diabetes displayed increased Class I transcripts and associated mRNA species. These ß-cells also expressed mRNA for Class II and Class II antigen presentation pathway components, but lacked the macrophage marker CD68. Immunohistological study of three independent cohorts of donors with recent-onset type 1 diabetes showed Class II protein and its transcriptional regulator Class II MHC trans-activator protein expressed by a subset of insulin+CD68- ß-cells, specifically found in islets with lymphocytic infiltrates. ß-Cell surface expression of HLA Class II was detected on a portion of CD45-insulin+ ß-cells from donors with type 1 diabetes by immunofluorescence and flow cytometry. Our data demonstrate that pancreatic ß-cells from donors with type 1 diabetes express Class II molecules on selected cells with other key genes in those pathways and inflammation-associated genes. ß-Cell expression of Class II molecules suggests that ß-cells may interact directly with islet-infiltrating CD4+ T cells and may play an immunopathogenic role.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/metabolismo , Apresentação de Antígeno/imunologia , Autoimunidade/fisiologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Humanos , Insulina/metabolismo
12.
J Clin Invest ; 129(1): 246-251, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30507613

RESUMO

Using an integrated approach to characterize the pancreatic tissue and isolated islets from a 33-year-old with 17 years of type 1 diabetes (T1D), we found that donor islets contained ß cells without insulitis and lacked glucose-stimulated insulin secretion despite a normal insulin response to cAMP-evoked stimulation. With these unexpected findings for T1D, we sequenced the donor DNA and found a pathogenic heterozygous variant in the gene encoding hepatocyte nuclear factor-1α (HNF1A). In one of the first studies of human pancreatic islets with a disease-causing HNF1A variant associated with the most common form of monogenic diabetes, we found that HNF1A dysfunction leads to insulin-insufficient diabetes reminiscent of T1D by impacting the regulatory processes critical for glucose-stimulated insulin secretion and suggest a rationale for a therapeutic alternative to current treatment.


Assuntos
Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Variação Genética , Fator 1-alfa Nuclear de Hepatócito , Células Secretoras de Insulina/metabolismo , Transcrição Gênica , Adolescente , Adulto , Diabetes Mellitus Tipo 1/patologia , Fator 1-alfa Nuclear de Hepatócito/biossíntese , Fator 1-alfa Nuclear de Hepatócito/genética , Heterozigoto , Humanos , Células Secretoras de Insulina/patologia , Masculino
13.
Diabetes ; 68(2): 337-348, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30425060

RESUMO

The sustained expression of the MAFB transcription factor in human islet ß-cells represents a distinct difference in mice. Moreover, mRNA expression of closely related and islet ß-cell-enriched MAFA does not peak in humans until after 9 years of age. We show that the MAFA protein also is weakly produced within the juvenile human islet ß-cell population and that MafB expression is postnatally restricted in mouse ß-cells by de novo DNA methylation. To gain insight into how MAFB affects human ß-cells, we developed a mouse model to ectopically express MafB in adult mouse ß-cells using MafA transcriptional control sequences. Coexpression of MafB with MafA had no overt impact on mouse ß-cells, suggesting that the human adult ß-cell MAFA/MAFB heterodimer is functionally equivalent to the mouse MafA homodimer. However, MafB alone was unable to rescue the islet ß-cell defects in a mouse mutant lacking MafA in ß-cells. Of note, transgenic production of MafB in ß-cells elevated tryptophan hydroxylase 1 mRNA production during pregnancy, which drives the serotonin biosynthesis critical for adaptive maternal ß-cell responses. Together, these studies provide novel insight into the role of MAFB in human islet ß-cells.


Assuntos
Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Fator de Transcrição MafB/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Cromossomos Artificiais Bacterianos/genética , Metilação de DNA/genética , Metilação de DNA/fisiologia , Feminino , Humanos , Técnicas In Vitro , Fatores de Transcrição Maf Maior/genética , Fator de Transcrição MafB/genética , Camundongos , Camundongos Transgênicos , Gravidez , Triptofano Hidroxilase/genética , Triptofano Hidroxilase/metabolismo
14.
Cell Rep ; 22(10): 2667-2676, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29514095

RESUMO

Many patients with type 1 diabetes (T1D) have residual ß cells producing small amounts of C-peptide long after disease onset but develop an inadequate glucagon response to hypoglycemia following T1D diagnosis. The features of these residual ß cells and α cells in the islet endocrine compartment are largely unknown, due to the difficulty of comprehensive investigation. By studying the T1D pancreas and isolated islets, we show that remnant ß cells appeared to maintain several aspects of regulated insulin secretion. However, the function of T1D α cells was markedly reduced, and these cells had alterations in transcription factors constituting α and ß cell identity. In the native pancreas and after placing the T1D islets into a non-autoimmune, normoglycemic in vivo environment, there was no evidence of α-to-ß cell conversion. These results suggest an explanation for the disordered T1D counterregulatory glucagon response to hypoglycemia.


Assuntos
Diabetes Mellitus Tipo 1/genética , Regulação da Expressão Gênica , Células Secretoras de Glucagon/metabolismo , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Reprogramação Celular , Criança , Feminino , Glucagon/metabolismo , Células Secretoras de Glucagon/patologia , Humanos , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Fenótipo , Doadores de Tecidos , Fatores de Transcrição/metabolismo , Adulto Jovem
17.
Nat Med ; 22(12): 1482-1487, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27798614

RESUMO

A major therapeutic goal for type 1 diabetes (T1D) is to induce autoantigen-specific tolerance of T cells. This could suppress autoimmunity in those at risk for the development of T1D, as well as in those with established disease who receive islet replacement or regeneration therapy. Because functional studies of human autoreactive T cell responses have been limited largely to peripheral blood-derived T cells, it is unclear how representative the peripheral T cell repertoire is of T cells infiltrating the islets. Our knowledge of the insulitic T cell repertoire is derived from histological and immunohistochemical analyses of insulitis, the identification of autoreactive CD8+ T cells in situ, in islets of human leukocyte antigen (HLA)-A2+ donors and isolation and identification of DQ8 and DQ2-DQ8 heterodimer-restricted, proinsulin-reactive CD4+ T cells grown from islets of a single donor with T1D. Here we present an analysis of 50 of a total of 236 CD4+ and CD8+ T cell lines grown from individual handpicked islets or clones directly sorted from handpicked, dispersed islets from nine donors with T1D. Seventeen of these T cell lines and clones reacted to a broad range of studied native islet antigens and to post-translationally modified peptides. These studies demonstrate the existence of a variety of islet-infiltrating, islet-autoantigen reactive T cells in individuals with T1D, and these data have implications for the design of successful immunotherapies.


Assuntos
Autoantígenos/imunologia , Autoimunidade/imunologia , Diabetes Mellitus Tipo 1/imunologia , Antígeno HLA-A2/imunologia , Antígenos HLA-DQ/imunologia , Ilhotas Pancreáticas/imunologia , Linfócitos T/imunologia , Adolescente , Adulto , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Criança , Feminino , Humanos , Masculino , Adulto Jovem
18.
Med Educ Online ; 21: 31534, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27499363

RESUMO

Leadership skills are essential for a successful career as a physician-scientist, yet many MD-PhD training programs do not offer formal training in leadership. The Vanderbilt Medical Scientist Training Program (MSTP) previously established a 2-day leadership workshop that has been held biennially since 2006 for students in the first and second years of the graduate school portion of combined MD and PhD training (G1/G2 students). Workshop attendees have consistently rated this workshop as a highly effective experience. However, opportunities for structured training in leadership competencies during the subsequent 3-5 years of MD-PhD training are limited. Given the success of the G1/G2 leadership workshop and the need for continuity in this model of leadership training, we developed a half-day workshop for MSTP students in the clinical years of medical school (M3/M4 students) to foster continued training in leadership. Our workshop curriculum, based in part on original cases drafted by Vanderbilt MSTP students, provides concrete strategies to manage conflict and navigate leadership transitions in the physician-scientist career path. The curriculum emphasizes both short-term competencies, such as effective participation as a member of a clinical team, and long-term competencies, such as leadership of a research team, division, or department. Our inaugural senior leadership workshop, held in August, 2015, was judged by student participants to be well organized and highly relevant to leadership concepts and skills. It will be offered biennially in our training curriculum for M3 and M4 MSTP students.


Assuntos
Pesquisa Biomédica/educação , Educação de Pós-Graduação em Medicina/organização & administração , Liderança , Escolha da Profissão , Currículo , Humanos , Negociação
19.
J Neurosci ; 33(7): 2761-72, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23407936

RESUMO

Brain sexual differentiation in rodents results from the perinatal testicular androgen surge. In the preoptic area (POA), estradiol aromatized from testosterone upregulates the production of the proinflammatory molecule, prostaglandin E(2) (PGE(2)) to produce sex-specific brain development. PGE(2) produces a two-fold greater density of dendritic spines in males than in females and masculinizes adult copulatory behavior. One neonatal dose of PGE(2) masculinizes the POA and behavior, and simultaneous treatment with an inhibitor of additional prostaglandin synthesis prevents this masculinization, indicating a positive feedforward process that leads to sustained increases in PGE(2). The mechanisms underlying this feedforward process were unknown. Microglia, the primary immunocompetent cells in the brain, are active neonatally, contribute to normal brain development, and both produce and respond to prostaglandins. We investigated whether there are sex differences in microglia in the POA and whether they influence developmental masculinization. Neonatal males had twice as many ameboid microglia as females and a more activated morphological profile, and both estradiol and PGE(2) masculinized microglial number and morphology in females. Microglial inhibition during the critical period for sexual differentiation prevented sex differences in microglia, estradiol-induced masculinization of dendritic spine density, and adult copulatory behavior. Microglial inhibition also prevented the estradiol-induced upregulation of PGE(2), indicating that microglia are essential to the feedforward process through which estradiol upregulates prostaglandin production. These studies demonstrate that immune cells in the brain interact with the nervous and endocrine systems during development, and are crucial for sexual differentiation of brain and behavior.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/citologia , Encéfalo/fisiologia , Microglia/fisiologia , Diferenciação Sexual/fisiologia , Animais , Western Blotting , Química Encefálica/fisiologia , Contagem de Células , Células Cultivadas , Espinhas Dendríticas/fisiologia , Dinoprostona/metabolismo , Dinoprostona/fisiologia , Estradiol/farmacologia , Estradiol/fisiologia , Feminino , Imunofluorescência , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Masculino , Minociclina/farmacologia , Proteínas do Tecido Nervoso/biossíntese , Área Pré-Óptica/crescimento & desenvolvimento , Área Pré-Óptica/metabolismo , Área Pré-Óptica/fisiologia , Ratos , Comportamento Sexual Animal/fisiologia , Maturidade Sexual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...