Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150947

RESUMO

Adaptation can occur at remarkably short timescales in natural populations, leading to drastic changes in phenotypes and genotype frequencies over a few generations only. The inference of demographic parameters can allow understanding how evolutionary forces interact and shape the genetic trajectories of populations during rapid adaptation. Here we propose a new Approximate Bayesian Computation (ABC) framework that couples a forward and individual-based model with temporal genetic data to disentangle genetic changes and demographic variations in a case of rapid adaptation. We test the accuracy of our inferential framework and evaluate the benefit of considering a dense versus sparse sampling. Theoretical investigations demonstrate high accuracy in both model and parameter estimations, even if a strong thinning is applied to time series data. Then, we apply our ABC inferential framework to empirical data describing the population genetic changes of the poplar rust pathogen following a major event of resistance overcoming. We successfully estimate key demographic and genetic parameters, including the proportion of resistant hosts deployed in the landscape and the level of standing genetic variation from which selection occurred. Inferred values are in accordance with our empirical knowledge of this biological system. This new inferential framework, which contrasts with coalescent-based ABC analyses, is promising for a better understanding of evolutionary trajectories of populations subjected to rapid adaptation.

2.
Mol Ecol ; 32(10): 2461-2471, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35906846

RESUMO

Growing genetically resistant plants allows pathogen populations to be controlled and reduces the use of pesticides. However, pathogens can quickly overcome such resistance. In this context, how can we achieve sustainable crop protection? This crucial question has remained largely unanswered despite decades of intense debate and research effort. In this study, we used a bibliographic analysis to show that the research field of resistance durability has evolved into three subfields: (1) "plant breeding" (generating new genetic material), (2) "molecular interactions" (exploring the molecular dialogue governing plant-pathogen interactions) and (3) "epidemiology and evolution" (explaining and forecasting of pathogen population dynamics resulting from selection pressure[s] exerted by resistant plants). We argue that this triple split of the field impedes integrated research progress and ultimately compromises the sustainable management of genetic resistance. After identifying a gap among the three subfields, we argue that the theoretical framework of population genetics could bridge this gap. Indeed, population genetics formally explains the evolution of all heritable traits, and allows genetic changes to be tracked along with variation in population dynamics. This provides an integrated view of pathogen adaptation, in particular via evolutionary-epidemiological feedbacks. In this Opinion Note, we detail examples illustrating how such a framework can better inform best practices for developing and managing genetically resistant cultivars.


Assuntos
Proteção de Cultivos , Melhoramento Vegetal , Genética Populacional , Plantas , Adaptação Fisiológica , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle
3.
Mol Ecol ; 32(10): 2472-2483, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-34843142

RESUMO

The deployment of plant varieties carrying resistance genes (R) exerts strong selection pressure on pathogen populations. Rapidly evolving avirulence genes (Avr) allow pathogens to escape R-mediated plant immunity through a variety of mechanisms, leading to virulence. The poplar rust fungus Melampsora larici-populina is a damaging pathogen of poplars in Europe. It underwent a major adaptive event in 1994, with the breakdown of the poplar RMlp7 resistance gene. Population genomics studies identified a locus in the genome of M. larici-populina that probably corresponds to the candidate avirulence gene AvrMlp7. Here, to further characterize this effector, we used a population genetics approach on a comprehensive set of 281 individuals recovered throughout a 28-year period encompassing the resistance breakdown event. Using two dedicated molecular tools, genotyping at the candidate locus highlighted two different alterations of a predominant allele found mainly before the resistance breakdown: a nonsynonymous mutation and a complete deletion of this locus. This results in six diploid genotypes: three genotypes related to the avirulent phenotype and three related to the virulent phenotype. The temporal survey of the candidate locus revealed that both alterations were found in association during the resistance breakdown event. They pre-existed before the breakdown in a heterozygous state with the predominant allele cited above. Altogether, these results suggest that the association of both alterations at the candidate locus AvrMlp7 drove the poplar rust adaptation to RMlp7-mediated immunity. This study demonstrates for the first time a case of adaptation from standing genetic variation in rust fungi during a qualitative resistance breakdown.


Assuntos
Basidiomycota , Mutação Puntual , Mutação , Europa (Continente) , Genética Populacional , Fungos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Basidiomycota/genética
4.
Genome Biol Evol ; 14(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919678

RESUMO

The recent availability of genome-wide sequencing techniques has allowed systematic screening for molecular signatures of adaptation, including in nonmodel organisms. Host-pathogen interactions constitute good models due to the strong selective pressures that they entail. We focused on an adaptive event which affected the poplar rust fungus Melampsora larici-populina when it overcame a resistance gene borne by its host, cultivated poplar. Based on 76 virulent and avirulent isolates framing narrowly the estimated date of the adaptive event, we examined the molecular signatures of selection. Using an array of genome scan methods based on different features of nucleotide diversity, we detected a single locus exhibiting a consistent pattern suggestive of a selective sweep in virulent individuals (excess of differentiation between virulent and avirulent samples, linkage disequilibrium, genotype-phenotype statistical association, and long-range haplotypes). Our study pinpoints a single gene and further a single amino acid replacement which may have allowed the adaptive event. Although our samples are nearly contemporary to the selective sweep, it does not seem to have affected genome diversity further than the immediate vicinity of the causal locus, which can be explained by a soft selective sweep (where selection acts on standing variation) and by the impact of recombination in mitigating the impact of selection. Therefore, it seems that properties of the life cycle of M. larici-populina, which entails both high genetic diversity and outbreeding, has facilitated its adaptation.


Assuntos
Basidiomycota , Populus , Genômica , Doenças das Plantas/microbiologia , Populus/genética
5.
Evol Appl ; 14(2): 513-523, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33664791

RESUMO

Crop varieties carrying qualitative resistance to targeted pathogens lead to strong selection pressure on parasites, often resulting in resistance breakdown. It is well known that qualitative resistance breakdowns modify pathogen population structure but few studies have analyzed the consequences on their quantitative aggressiveness-related traits. The aim of this study was to characterize the evolution of these traits following a resistance breakdown in the poplar rust fungus, Melampsora larici-populina. We based our experiment on three temporal populations sampled just before the breakdown event, immediately after and four years later. First, we quantified phenotypic differences among populations for a set of aggressiveness traits on a universally susceptible cultivar (infection efficiency, latent period, lesion size, mycelium quantity, and sporulation rate) and one morphological trait (mean spore volume). Then, we estimated heritability to establish which traits could be subjected to adaptive evolution and tested for evidence of selection. Our results revealed significant changes in the morphological trait but no variation in aggressiveness traits. By contrast, recent works have demonstrated that quantitative resistance (initially assumed more durable) could be eroded and lead to increased aggressiveness. Hence, this study is one example suggesting that the use of qualitative resistance may be revealed to be less detrimental to long-term sustainable crop production.

6.
Front Plant Sci ; 9: 1396, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30323821

RESUMO

Foliar pathogens face heterogeneous environments depending on the maturity of leaves they interact with. In particular, nutrient availability as well as defense levels may vary significantly, with opposing effects on the success of infection. The present study tested which of these factors have a dominant effect on the pathogen's development. Poplar leaf disks of eight maturity levels were inoculated with the poplar rust fungus Melampsora larici-populina using an innovative single-spore inoculation procedure. A set of quantitative fungal traits (infection efficiency, latent period, uredinia size, mycelium quantity, sporulation rate, sporulation capacity, and spore volume) was measured on each infected leaf disk. Uninfected parts of the leaves were analyzed for their nutrient (sugars, total C and N) and defense compounds (phenolics) content. We found that M. larici-populina is more aggressive on more mature leaves as indicated by wider uredinia and a higher sporulation rate. Other traits varied independently from each other without a consistent pattern. None of the pathogen traits correlated with leaf sugar, total C, or total N content. In contrast, phenolic contents (flavonols, hydroxycinnamic acid esters, and salicinoids) were negatively correlated with uredinia size and sporulation rate. The pathogen's fitness appeared to be more constrained by the constitutive plant defense level than limited by nutrient availability, as evident in the decrease in sporulation.

7.
Mol Ecol Resour ; 17(6): e251-e267, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28662317

RESUMO

Partial clonality is commonly used in eukaryotes and has large consequences for their evolution and ecology. Assessing accurately the relative importance of clonal vs. sexual reproduction matters for studying and managing such species. Here, we proposed a Bayesian approach, ClonEstiMate, to infer rates of clonality c from populations sampled twice over a short time interval, ideally one generation time. The method relies on the likelihood of the transitions between genotype frequencies of ancestral and descendent populations, using an extended Wright-Fisher model explicitly integrating reproductive modes. Our model provides posterior probability distribution of inferred c, given the assumed rates of mutation, as well as inbreeding and selfing when occurring. Tested under various conditions, this model provided accurate inferences of c, especially when the amount of information was modest, that is low sample sizes, few loci, low polymorphism and strong linkage disequilibrium. Inferences remained robust when mutation models and rates were misinformed. However, the method was sensitive to moderate frequencies of null alleles and when the time interval between required samplings exceeding two generations. Misinformed rates on mating modes (inbreeding and selfing) also resulted in biased inferences. Our method was tested on eleven data sets covering five partially clonal species, for which the extent of clonality was formerly deciphered. It delivered highly consistent results with previous information on the biology of those species. ClonEstiMate represents a powerful tool for detecting and inferring clonality in finite populations, genotyped with SNPs or microsatellites. It is freely available at https://www6.rennes.inra.fr/igepp_eng/Productions/Software.


Assuntos
Teorema de Bayes , Eucariotos/classificação , Eucariotos/genética , Variação Genética , Genética Populacional/métodos , Técnicas de Genotipagem/métodos , Fatores de Tempo
8.
Environ Microbiol ; 19(7): 2604-2615, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28371112

RESUMO

The Périgord black truffle (Tuber melanosporum Vittad.) is a heterothallic ascomycete that establishes ectomycorrhizal symbiosis with trees and shrubs. Small-scale genetic structures of female genotypes in truffle orchards are known, but it has not yet been studied in male genotypes. In this study, our aim was to characterize the small-scale genetic structure of both male and female genotypes over five years in an orchard to better understand the T. melanosporum sexual reproduction strategy, male genotype dynamics, and origins. Two-hundred forty-one ascocarps, 475 ectomycorrhizas, and 20 soil cores were harvested and genotyped using microsatellites and mating type genes. Isolation by distance analysis revealed pronounced small-scale genetic structures for both female and male genotypes. The genotypic diversity was higher for male than female genotypes with numerous small size genotypes suggesting an important turnover due to ascospore recruitment. Larger and perennial female and male genotypes were also detected. Only three genotypes (1.5%) were found as both female and male genotypes (hermaphrodites) while most were detected only as female or male genotype (dioecy). Our results suggest that germinating ascospores act as male genotypes, but we also proposed that soil mycelium could be a reservoir of male genotypes.


Assuntos
Ascomicetos/fisiologia , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Genótipo , Repetições de Microssatélites , Reprodução , Microbiologia do Solo , Simbiose
9.
Mol Ecol ; 26(7): 1902-1918, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28012228

RESUMO

Host-parasite systems provide convincing examples of Red Queen co-evolutionary dynamics. Yet, a key process underscored in Van Valen's theory - that arms race dynamics can result in extinction - has never been documented. One reason for this may be that most sampling designs lack the breadth needed to illuminate the rapid pace of adaptation by pathogen populations. In this study, we used a 25-year temporal sampling to decipher the demographic history of a plant pathogen: the poplar rust fungus, Melampsora larici-populina. A major adaptive event occurred in 1994 with the breakdown of R7 resistance carried by several poplar cultivars widely planted in Western Europe since 1982. The corresponding virulence rapidly spread in M. larici-populina populations and nearly reached fixation in northern France, even on susceptible hosts. Using both temporal records of virulence profiles and temporal population genetic data, our analyses revealed that (i) R7 resistance breakdown resulted in the emergence of a unique and homogeneous genetic group, the so-called cultivated population, which predominated in northern France for about 20 years, (ii) selection for Vir7 individuals brought with it multiple other virulence types via hitchhiking, resulting in an overall increase in the population-wide number of virulence types and (iii) - above all - the emergence of the cultivated population superseded the initial population which predominated at the same place before R7 resistance breakdown. Our temporal analysis illustrates how antagonistic co-evolution can lead to population extinction and replacement, hence providing direct evidence for the escalation process which is at the core of Red Queen dynamics.


Assuntos
Adaptação Fisiológica/genética , Genética Populacional , Populus/microbiologia , Basidiomycota/genética , Basidiomycota/patogenicidade , Bélgica , Evolução Molecular , França , Genótipo , Interações Hospedeiro-Patógeno/genética , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Seleção Genética , Virulência/genética
10.
Appl Environ Microbiol ; 82(24): 7142-7153, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27736786

RESUMO

Assessing the process that gives rise to hybrid pathogens is central to understanding the evolution of emerging plant diseases. Phytophthora ×alni, a pathogen of alder, results from the homoploid hybridization of two related species, Phytophthora uniformis and Phytophthora ×multiformis Describing the genetic characteristics of P ×alni should help us understand how reproductive mechanisms and historical processes shaped the population structure of this emerging hybrid pathogen. The population genetic structure of P ×alni and the relationship with its parental species were investigated using 12 microsatellites and one mitochondrial DNA (mtDNA) marker on a European collection of 379 isolates. Populations of P ×alni were dominated by one multilocus genotype (MLG). The frequency of this dominant MLG increased after the disease emergence together with a decline in diversity, suggesting that it was favored by a genetic mechanism such as drift or selection. Combined microsatellite and mtDNA results confirmed that P ×alni originated from multiple hybridization events that involved different genotypes of the progenitors. Our detailed analyses point to a geographic structure that mirrors that observed for P. uniformis in Europe. The study provides more insights on the contribution of P. uniformis, an invasive species in Europe, to the emergence of Phytophthora-induced alder decline. IMPORTANCE: Our study describes an original approach to assess the population genetics of polyploid organisms using microsatellite markers. By studying the parental subgenomes present in the interspecific hybrid P. ×alni, we were able to assess the geographical and temporal structure of European populations of the hybrid, shedding new light on the evolution of an emerging plant pathogen. In turn, the study of the parental subgenomes permitted us to assess some genetic characteristics of the parental species of P. ×alni, P. uniformis, and P ×multiformis, which are seldom sampled in nature. The subgenomes found in P. ×alni represent a picture of the "fossilized" diversity of the parental species.


Assuntos
Variação Genética , Phytophthora/genética , Alnus/microbiologia , DNA Mitocondrial/genética , Europa (Continente) , Genótipo , Hibridização Genética , Repetições de Microssatélites , Filogenia , Phytophthora/classificação , Phytophthora/isolamento & purificação , Doenças das Plantas/microbiologia , Poliploidia
11.
Ecol Evol ; 6(18): 6625-6632, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27777735

RESUMO

The genetic consequences of range expansions have generally been investigated at wide geographical and temporal scales, long after the colonization event. A unique ecological system enabled us to both monitor the colonization dynamics and decipher the genetic footprints of expansion over a very short time period. Each year an epidemic of the poplar rust (Melampsora larici-populina) expands clonally and linearly along the Durance River, in the Alps. The colonization dynamics observed in 2004 showed two phases with different genetic outcomes. Upstream, fast colonization maintained high genetic diversity. Downstream, the colonization wave progressively faltered, diversity eroded, and differentiation increased, as expected under recurrent founder events. In line with the high dispersal abilities of rust pathogens, we provide evidence for leapfrog dispersal of clones. Our results thus emphasize the importance of colonization dynamics in shaping spatial genetic structure in the face of high gene flow.

12.
Front Plant Sci ; 5: 450, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309551

RESUMO

Melampsora larici-populina is a fungal pathogen responsible for foliar rust disease on poplar trees, which causes damage to forest plantations worldwide, particularly in Northern Europe. The reference genome of the isolate 98AG31 was previously sequenced using a whole genome shotgun strategy, revealing a large genome of 101 megabases containing 16,399 predicted genes, which included secreted protein genes representing poplar rust candidate effectors. In the present study, the genomes of 15 isolates collected over the past 20 years throughout the French territory, representing distinct virulence profiles, were characterized by massively parallel sequencing to assess genetic variation in the poplar rust fungus. Comparison to the reference genome revealed striking structural variations. Analysis of coverage and sequencing depth identified large missing regions between isolates related to the mating type loci. More than 611,824 single-nucleotide polymorphism (SNP) positions were uncovered overall, indicating a remarkable level of polymorphism. Based on the accumulation of non-synonymous substitutions in coding sequences and the relative frequencies of synonymous and non-synonymous polymorphisms (i.e., PN/PS ), we identify candidate genes that may be involved in fungal pathogenesis. Correlation between non-synonymous SNPs in genes encoding secreted proteins (SPs) and pathotypes of the studied isolates revealed candidate genes potentially related to virulences 1, 6, and 8 of the poplar rust fungus.

13.
Front Plant Sci ; 5: 454, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25309554

RESUMO

The poplar rust fungus Melampsora larici-populina causes significant yield reduction and severe economic losses in commercial poplar plantations. After several decades of breeding for qualitative resistance and subsequent breakdown of the released resistance genes, breeders now focus on quantitative resistance, perceived to be more durable. But quantitative resistance also can be challenged by an increase of aggressiveness in the pathogen. Thus, it is of primary importance to better understand the genetic architecture of aggressiveness traits. To this aim, our goal is to build a genetic linkage map for M. larici-populina in order to map quantitative trait loci related to aggressiveness. First, a large progeny of M. larici-populina was generated through selfing of the reference strain 98AG31 (which genome sequence is available) on larch plants, the alternate host of the poplar rust fungus. The progeny's meiotic origin was validated through a segregation analysis of 115 offspring with 14 polymorphic microsatellite markers, of which 12 segregated in the expected 1:2:1 Mendelian ratio. A microsatellite-based linkage disequilibrium analysis allowed us to identify one potential linkage group comprising two scaffolds. The whole genome of a subset of 47 offspring was resequenced using the Illumina HiSeq 2000 technology at a mean sequencing depth of 6X. The reads were mapped onto the reference genome of the parental strain and 144,566 SNPs were identified across the genome. Analysis of distribution and polymorphism of the SNPs along the genome led to the identification of 2580 recombination blocks. A second linkage disequilibrium analysis, using the recombination blocks as markers, allowed us to group 81 scaffolds into 23 potential linkage groups. These preliminary results showed that a high-density linkage map could be constructed by using high-quality SNPs based on low-coverage resequencing of a larger number of M. larici-populina offspring.

14.
New Phytol ; 199(1): 176-187, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23574460

RESUMO

The genetic structure of ectomycorrhizal (ECM) fungal populations results from both vegetative and sexual propagation. In this study, we have analysed the spatial genetic structure of Tuber melanosporum populations, a heterothallic ascomycete that produces edible fruit bodies. Ectomycorrhizas from oaks and hazels from two orchards were mapped and genotyped using simple sequence repeat markers and the mating type locus. The distribution of the two T. melanosporum mating types was also monitored in the soil. In one orchard, the genetic profiles of the ascocarps were compared with those of the underlying mycorrhizas. A pronounced spatial genetic structure was found. The maximum genet sizes were 2.35 and 4.70 m in the two orchards, with most manifesting a size < 1 m. Few genets persisted throughout two seasons. A nonrandom distribution pattern of the T. melanosporum was observed, resulting in field patches colonized by genets that shared the same mating types. Our findings suggest that competition occurs between genets and provide basic information on T. melanosporum propagation patterns that are relevant for the management of productive truffle orchards.


Assuntos
Ascomicetos/genética , Repetições de Microssatélites , Variação Genética , Genética Populacional , Itália , Micorrizas/genética , Plantas Comestíveis/genética , Quercus/microbiologia , Reprodução Assexuada/genética , Microbiologia do Solo
15.
Phytopathology ; 103(2): 190-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23095465

RESUMO

Alder decline caused by Phytophthora alni has been one of the most important diseases of natural ecosystems in Europe during the last 20 years. The emergence of P. alni subsp. alni -the pathogen responsible for the epidemic-is linked to an interspecific hybridization event between two parental species: P. alni subsp. multiformis and P. alni subsp. uniformis. One of the parental species, P. alni subsp. uniformis, has been isolated in several European countries and, recently, in North America. The objective of this work was to assess the level of genetic diversity, the population genetic structure, and the putative reproduction mode and mating system of P. alni subsp. uniformis. Five new polymorphic microsatellite markers were used to contrast both geographical populations. The study comprised 71 isolates of P. alni subsp. uniformis collected from eight European countries and 10 locations in North America. Our results revealed strong differences between continental populations (Fst = 0.88; Rst = 0.74), with no evidence for gene flow. European isolates showed extremely low genetic diversity compared with the North American collection. Selfing appears to be the predominant mating system in both continental collections. The results suggest that the European P. alni subsp. uniformis population is most likely alien and derives from the introduction of a few individuals, whereas the North American population probably is an indigenous population.


Assuntos
Alnus/parasitologia , Variação Genética , Repetições de Microssatélites/genética , Phytophthora/genética , Doenças das Plantas/parasitologia , Alelos , Europa (Continente) , Frequência do Gene , Deriva Genética , Genética Populacional , Genótipo , Geografia , Reação em Cadeia da Polimerase Multiplex , América do Norte , Phytophthora/classificação , Phytophthora/isolamento & purificação , Polimorfismo Genético , Reprodução
16.
Mol Ecol ; 21(20): 4996-5008, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22967194

RESUMO

Fungal plant pathogens, especially rust fungi (Pucciniales), are well known for their complex life cycles, which include phases of sexual and asexual reproduction. The effect of asexual multiplication on population genetic diversity has been investigated in the poplar rust fungus Melampsora larici-populina using a nested hierarchical sampling scheme. Four hierarchical levels were considered: leaf, twig, tree and site. Both cultivated and wild poplar stands were sampled at two time points at the start and end of rust epidemics. A total of 641 fungal isolates was analysed using nine microsatellite markers. This study revealed that the genetic signature of asexual multiplication in the wild poplar stand was seen only at lower hierarchical levels (leaf and twig). Moreover, we observed an erosion of clonal structure through time, with an increase in both gene and genotypic diversity. New genotypes contributed to host infection over time, which demonstrates the importance of allo-infection in the epidemic process in this host-pathogen system. Compared with the wild stands, the nearly lack of detection of clonal structure in the cultivated stands reflects the higher infection level on cultivated poplars. More generally, this genetic analysis illustrates the utility of population genetics approach for elucidating the proportion of asexual reproduction in the multiplication of isolates during an epidemic, and for proper quantification of asexual dispersal in plant pathogens.


Assuntos
Basidiomycota/genética , Variação Genética , Genética Populacional/métodos , Populus/microbiologia , DNA Fúngico/genética , Genótipo , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Reprodução Assexuada , Análise de Sequência de DNA
17.
Mol Ecol ; 21(10): 2383-98, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22490255

RESUMO

The advent of molecular epidemiology has greatly improved our ability to identify the population sources and track the pathogen movement. Yet the wide spatial and temporal scales usually considered are useful only to infer historical migration pathways. In this study, Bayesian genetic assignments and a landscape epidemiology approach were combined to unravel genetic origin and annual spread during a single epidemic of a plant pathogen: the poplar rust fungus Melampsora larici-populina. The study focused on a particular area-the Durance River valley-which enabled inoculum sources to be identified and channelled spread of the epidemic along a one-dimensional corridor. Spatio-temporal monitoring of disease showed that the epidemic began in the upstream part of the valley and spread out downstream. Using genetic assignment tests, individuals collected at the end of the epidemic were sorted into two genetic groups; very few hybrids were detected, although individuals from both groups coexisted locally downstream in the valley. The epidemic originated from two genetically distinct inoculum sources. Individuals of each group then dispersed southwards along the Durance River and became mixed in poplar riparian stands. These two genetic groups were found previously at a wider spatial scale and proved to result from distinct evolutionary histories on either wild or cultivated poplars. This study showed that the two groups can mix during an epidemic but do not hybridize because they then reproduce asexually. In general, the methods employed here could be useful for elucidating the genetic origin and retracing the colonization history and migration pathways of recent epidemics.


Assuntos
Basidiomycota/genética , Epidemiologia Molecular/métodos , Doenças das Plantas/microbiologia , Populus/microbiologia , Basidiomycota/patogenicidade , Teorema de Bayes , França , Genótipo , Repetições de Microssatélites , Modelos Biológicos , Virulência
18.
Phytopathology ; 100(11): 1262-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20932169

RESUMO

In some diseases-in particular, tree root infection-stages of infection and inoculum production level and timing are not readily observable because of uncertainty or time lags in symptom appearance. Here, we pose a criterion, based on relative hazard of disease symptoms, to discriminate between healthy and asymptomatic infected individuals. We design a statistical procedure to estimate the criterion for a 6-year survey of alder decline along a northeastern French river. Individual tree symptom hazard was modeled with Cox's regression model, taking estimation of local infection pressure as a risk factor. From an inoculum production experiment, we thereafter assessed the inoculum production level of target trees, including symptomatic and asymptomatic trees ranked according to their symptoms hazard. Using receiver operating characteristic methods, we first evaluated the criterion performance and determined the discrimination threshold to sort out asymptomatic individuals into healthy and infected. Then, we highlighted the fact that the infected asymptomatic trees were among the major inoculum producers whereas severely declining and dead trees were found to be poor inoculum sources.


Assuntos
Alnus/microbiologia , Modelos Biológicos , Modelos Estatísticos , Phytophthora/fisiologia , Doenças das Plantas/microbiologia
19.
Evolution ; 63(9): 2402-12, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19473379

RESUMO

Life-history theory postulates that evolution is constrained by trade-offs (i.e., negative genetic correlations) among traits that contribute to fitness. However, in organisms with complex life cycles, trade-offs may drastically differ between phases, putatively leading to different evolutionary trajectories. Here, we tested this possibility by examining changes in life-history traits in an aphid species that alternates asexual and sexual reproduction in its life cycle. The quantitative genetics of reproductive and dispersal traits was studied in 23 lineages (genotypes) of the bird cherry-oat aphid Rhopalosiphum padi, during both the sexual and asexual phases, which were induced experimentally under specific environmental conditions. We found large and significant heritabilities (broad-sense) for all traits and several negative genetic correlations between traits (trade-offs), which are related to reproduction (i.e., numbers of the various sexual or asexual morphs) or dispersal (i.e., numbers of winged or wingless morphs). These results suggest that R. padi exhibits lineage specialization both in reproductive and dispersal strategies. In addition, we found important differences in the structure of genetic variance-covariance matrices (G) between phases. These differences were due to two large, negative genetic correlations detected during the asexual phase only: (1) between fecundity and age at maturity and (2) between the production of wingless and winged parthenogenetic females. We propose that this differential expression in genetic architecture results from a reallocation scheme during the asexual phase, when sexual morphs are not produced. We also found significant G x E interaction and nonsignificant genetic correlations across phases, indicating that genotypes could respond independently to selection in each phase. Our results reveal a rather unique situation in which the same population and even the same genotypes express different genetic (co)variation under different environmental conditions, driven by optimal resource allocation criteria.


Assuntos
Afídeos/genética , Evolução Biológica , Estágios do Ciclo de Vida/fisiologia , Migração Animal , Animais , Afídeos/fisiologia , Feminino , Fertilidade/genética , Genética Populacional , Masculino , Modelos Genéticos , Reprodução Assexuada/genética , Seleção Genética , Comportamento Sexual Animal/fisiologia
20.
Infect Genet Evol ; 8(5): 577-87, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18499532

RESUMO

Dispersal has a great impact on the genetic structure of populations, but remains difficult to estimate by direct measures. In particular, gradual and stochastic dispersal are often difficult to assess and to distinguish, although they have different evolutionary consequences. Plant pathogens, especially rust fungi, are suspected to display both dispersal modes, though on different spatial scales. In this study, we inferred dispersal capacities of the poplar rust fungus Melampsora larici-populina by examining the genetic diversity and structure of 13 populations from eight European and two overseas countries in the Northern hemisphere. M. larici-populina was sampled from both cultivated hybrid poplars and on the wild host, Populus nigra. The populations were analyzed with 11 microsatellite and 8 virulence markers. Although isolates displayed different virulence profiles according to the host plant, neutral markers revealed little population differentiation with respect to the type of host. This suggests an absence of reproductive isolation between populations sampled from cultivated and wild poplars. Conversely, studying the relationship between geographic and genetic structure allowed us to distinguish between isolation by distance (IBD) patterns and long distance dispersal (LDD) events. The European populations exhibited a significant IBD pattern, suggesting a regular and gradual dispersal of the pathogen over this spatial scale. Nonetheless, the genetic differentiation between these populations was low, suggesting an important gene flow on a continental scale. The two overseas populations from Iceland and Canada were shown to result from rare LDD events, and exhibited signatures of strong founder effects. Furthermore, the high genetic differentiation between both populations suggested that these two recent introductions were independent. This study illustrated how the proper use of population genetics methods can enable contrasted dispersal modes to be revealed.


Assuntos
Basidiomycota/genética , Efeito Fundador , Geografia , Doenças das Plantas/microbiologia , Populus/microbiologia , Basidiomycota/patogenicidade , Europa (Continente) , Variação Genética , Análise de Regressão , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...