Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(8): e2300692, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38288674

RESUMO

Measurement of molecular weight is an integral part of macromolecular and polymer characterization which usually has limitations. Herein, this article presents the use of a bench-top 80 MHz Nuclear Magnetic Resonance (NMR) spectrometer for diffusion-ordered spectroscopy as a practical and rapid approach for the determination of molecular weight/size using a novel solvent and polymer-independent universal calibration.


Assuntos
Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Peso Molecular , Polímeros , Polímeros/química , Espectroscopia de Ressonância Magnética/métodos , Substâncias Macromoleculares/química , Difusão
2.
Exp Ther Med ; 22(5): 1295, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34630650

RESUMO

Glutamate-induced excitotoxicity is a well-recognized cause of neuronal cell death. Nutritional supplementation with Coenzyme Q10 (CoQ10) has been previously demonstrated to serve neuro-protective effects against glutamate-induced excitotoxicity. The aim of the present study was to determine whether the protective effect of CoQ10 against glutamate toxicity could be attributed to stimulating mitochondrial biogenesis. Mouse hippocampal neuronal HT22 cells were incubated with glutamate with or without ubisol Q10. The results revealed that glutamate significantly decreased levels of mitochondrial biogenesis related proteins, including peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and nuclear respiratory factor (NRF)2. Additionally, glutamate reduced mitochondrial biogenesis, as determined using a mitochondrial biogenesis kit. Pretreatment with CoQ10 prevented decreases in phosphorylated (p)-Akt, p-cAMP response element-binding protein, PGC-1α, NRF2 and mitochondrial transcription factor A, increasing mitochondrial biogenesis. Taken together, the results described a novel mechanism of CoQ10-induced neuroprotection and indicated a central role for mitochondrial biogenesis in protecting against glutamate-induced excitotoxicity.

3.
RSC Adv ; 4(94): 52279-52288, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25580244

RESUMO

In this report, we demonstrate a rapid, simple, and green method for synthesizing silver-gold (Ag-Au) bimetallic nanoparticles (BNPs). We used a novel modification to the galvanic replacement reaction by suspending maltose coated silver nanoparticles (NPs) in ≈ 2% aqueous solution of EO100PO65EO100 (Pluronic F127) prior to HAuCl4 addition. The Pluronic F127 stabilizes the BNPs, imparts biocompatibility, and mitigates the toxicity issues associated with other surfactant stabilizers. BNPs with higher Au:Ag ratios and, subsequently, different morphologies were successfully synthesized by increasing the concentration of gold salt added to the Ag NP seeds. These BNPs have enhanced catalytic activities than typically reported for monometallic Au or Ag NPs (∼ 2-10 fold) of comparable sizes in the sodium borohydride reduction of 4-nitrophenol. The 4-nitrophenol reduction rates were highest for partially hollow BNP morphologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...