Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropathol Appl Neurobiol ; 50(3): e12984, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783575

RESUMO

AIMS: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS: We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS: Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS: This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.


Assuntos
Metilação de DNA , Sequenciamento por Nanoporos , Regiões Promotoras Genéticas , Humanos , Sequenciamento por Nanoporos/métodos , Regiões Promotoras Genéticas/genética , Ilhas de CpG/genética , Proteínas Supressoras de Tumor/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Neoplasias Encefálicas/genética , Feminino , Masculino , Glioblastoma/genética , Idoso
2.
Neurooncol Adv ; 5(1): vdad021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37066109

RESUMO

Background: Biomechanical tissue properties of glioblastoma tumors are heterogeneous, but the molecular mechanisms involved and the biological implications are poorly understood. Here, we combine magnetic resonance elastography (MRE) measurement of tissue stiffness with RNA sequencing of tissue biopsies to explore the molecular characteristics of the stiffness signal. Methods: MRE was performed preoperatively in 13 patients with glioblastoma. Navigated biopsies were harvested during surgery and classified as "stiff" or "soft" according to MRE stiffness measurements (|G*|norm). Twenty-two biopsies from eight patients were analyzed by RNA sequencing. Results: The mean whole-tumor stiffness was lower than normal-appearing white matter. The surgeon's stiffness evaluation did not correlate with the MRE measurements, which suggests that these measures assess different physiological properties. Pathway analysis of the differentially expressed genes between "stiff" and "soft" biopsies showed that genes involved in extracellular matrix reorganization and cellular adhesion were overexpressed in "stiff" biopsies. Supervised dimensionality reduction identified a gene expression signal separating "stiff" and "soft" biopsies. Using the NIH Genomic Data Portal, 265 glioblastoma patients were divided into those with (n = 63) and without (n = 202) this gene expression signal. The median survival time of patients with tumors expressing the gene signal associated with "stiff" biopsies was 100 days shorter than that of patients not expressing it (360 versus 460 days, hazard ratio: 1.45, P < .05). Conclusion: MRE imaging of glioblastoma can provide noninvasive information on intratumoral heterogeneity. Regions of increased stiffness were associated with extracellular matrix reorganization. An expression signal associated with "stiff" biopsies correlated with shorter survival of glioblastoma patients.

3.
Mol Cell Proteomics ; 21(2): 100185, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34923141

RESUMO

Breast cancer cells that have undergone partial epithelial-mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-ß. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer.


Assuntos
Neoplasias da Mama , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Frutosefosfatos , Glutamina/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Estresse Oxidativo , Transaminases/metabolismo
4.
Neurooncol Adv ; 3(1): vdab149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34729487

RESUMO

BACKGROUND: Brain tumor surgery must balance the benefit of maximal resection against the risk of inflicting severe damage. The impact of increased resection is diagnosis-specific. However, the precise diagnosis is typically uncertain at surgery due to limitations of imaging and intraoperative histomorphological methods. Novel and accurate strategies for brain tumor classification are necessary to support personalized intraoperative neurosurgical treatment decisions. Here, we describe a fast and cost-efficient workflow for intraoperative classification of brain tumors based on DNA methylation profiles generated by low coverage nanopore sequencing and machine learning algorithms. METHODS: We evaluated 6 independent cohorts containing 105 patients, including 50 pediatric and 55 adult patients. Ultra-low coverage whole-genome sequencing was performed on nanopore flow cells. Data were analyzed using copy number variation and ad hoc random forest classifier for the genome-wide methylation-based classification of the tumor. RESULTS: Concordant classification was obtained between nanopore DNA methylation analysis and a full neuropathological evaluation in 93 of 105 (89%) cases. The analysis demonstrated correct diagnosis in 6/6 cases where frozen section evaluation was inconclusive. Results could be returned to the operating room at a median of 97 min (range 91-161 min). Precise classification of the tumor entity and subtype would have supported modification of the surgical strategy in 12 out of 20 patients evaluated intraoperatively. CONCLUSION: Intraoperative nanopore sequencing combined with machine learning diagnostics was robust, sensitive, and rapid. This strategy allowed DNA methylation-based classification of the tumor to be returned to the surgeon within a timeframe that supports intraoperative decision making.

5.
NPJ Syst Biol Appl ; 7(1): 36, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535676

RESUMO

Epithelial-to-mesenchymal transition (EMT) is fundamental to both normal tissue development and cancer progression. We hypothesized that EMT plasticity defines a range of metabolic phenotypes and that individual breast epithelial metabolic phenotypes are likely to fall within this phenotypic landscape. To determine EMT metabolic phenotypes, the metabolism of EMT was described within genome-scale metabolic models (GSMMs) using either transcriptomic or proteomic data from the breast epithelial EMT cell culture model D492. The ability of the different data types to describe breast epithelial metabolism was assessed using constraint-based modeling which was subsequently verified using 13C isotope tracer analysis. The application of proteomic data to GSMMs provided relatively higher accuracy in flux predictions compared to the transcriptomic data. Furthermore, the proteomic GSMMs predicted altered cholesterol metabolism and increased dependency on argininosuccinate lyase (ASL) following EMT which were confirmed in vitro using drug assays and siRNA knockdown experiments. The successful verification of the proteomic GSMMs afforded iBreast2886, a breast GSMM that encompasses the metabolic plasticity of EMT as defined by the D492 EMT cell culture model. Analysis of breast tumor proteomic data using iBreast2886 identified vulnerabilities within arginine metabolism that allowed prognostic discrimination of breast cancer patients on a subtype-specific level. Taken together, we demonstrate that the metabolic reconstruction iBreast2886 formalizes the metabolism of breast epithelial cell development and can be utilized as a tool for the functional interpretation of high throughput clinical data.


Assuntos
Neoplasias da Mama , Proteômica , Argininossuccinato Liase/genética , Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Genoma , Humanos
6.
Mol Cancer Res ; 19(9): 1546-1558, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34088869

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a fundamental developmental process with strong implications in cancer progression. Understanding the metabolic alterations associated with EMT may open new avenues of treatment and prevention. Here we used 13C carbon analogs of glucose and glutamine to examine differences in their utilization within central carbon and lipid metabolism following EMT in breast epithelial cell lines. We found that there are inherent differences in metabolic profiles before and after EMT. We observed EMT-dependent re-routing of the TCA-cycle, characterized by increased mitochondrial IDH2-mediated reductive carboxylation of glutamine to lipid biosynthesis with a concomitant lowering of glycolytic rates and glutamine-dependent glutathione (GSH) generation. Using weighted correlation network analysis, we identified cancer drugs whose efficacy against the NCI-60 Human Tumor Cell Line panel is significantly associated with GSH abundance and confirmed these in vitro. We report that EMT-linked alterations in GSH synthesis modulate the sensitivity of breast epithelial cells to mTOR inhibitors. IMPLICATIONS: EMT in breast cells causes an increased demand for glutamine for fatty acid biosynthesis, altering its contribution to glutathione biosynthesis, which sensitizes the cells to mTOR inhibitors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Glutamina/metabolismo , Inibidores de MTOR/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Metaboloma , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Feminino , Glicólise , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Via de Pentose Fosfato , Células Tumorais Cultivadas
7.
J Alzheimers Dis ; 81(1): 231-244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33814423

RESUMO

BACKGROUND: Understanding how dysregulation in lipid metabolism relates to the severity of Alzheimer's disease (AD) pathology might be critical in developing effective treatments. OBJECTIVE: To identify lipid species in cerebrospinal fluid (CSF) associated with signature AD pathology and to explore their relationships with measures reflecting AD-related processes (neurodegeneration, inflammation, deficits in verbal episodic memory) among subjects at the pre- and early symptomatic stages of dementia. METHODS: A total of 60 subjects that had been referred to an Icelandic memory clinic cohort were classified as having CSF AD (n = 34) or non-AD (n = 26) pathology profiles. Untargeted CSF lipidomic analysis was performed using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS) for the detection of mass-to-charge ratio (m/z) features. CSF proteins reflecting neurodegeneration (neurofilament light [NFL]) and inflammation (chitinase-3-like protein 1 [YKL-40], S100 calcium-binding protein B [S100B], glial fibrillary acidic protein [GFAP]) were also measured. Rey Auditory Verbal Learning (RAVLT) and Story tests were used for the assessment of verbal episodic memory. RESULTS: Eight out of 1008 features were identified as best distinguishing between the CSF profile groups. Of those, only the annotation of the m/z feature assigned to lipid species C18 ceramide was confirmed with a high confidence. Multiple regression analyses, adjusted for age, gender, and education, demonstrated significant associations of CSF core AD markers (Aß42: st.ß= -0.36, p = 0.007; T-tau: st.ß= 0.41, p = 0.005) and inflammatory marker S100B (st.ß= 0.51, p = 0.001) with C18 ceramide levels. CONCLUSION: Higher levels of C18 ceramide associated with increased AD pathology and inflammation, suggesting its potential value as a therapeutic target.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Ceramidas/líquido cefalorraquidiano , Demência/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Cromatografia Líquida , Progressão da Doença , Feminino , Humanos , Inflamação/líquido cefalorraquidiano , Masculino , Memória Episódica , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Espectrometria de Massas em Tandem , Proteínas tau/líquido cefalorraquidiano
8.
J Tissue Eng Regen Med ; 14(3): 441-451, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31826323

RESUMO

Acellular fish skin (ACS) has emerged as a dermal substitute used to promote wound healing with decreased scar formation and pain relief that may be due to polyunsaturated fatty acid (PUFA) content. However, the PUFA content of ACS is still unknown. The aim of this study was to compare the total fatty acids and lipid profiles of ACS to two bovine-based grafts and standard of care human cadaver skin (HCS). Furthermore, there was also the goal to assess the capability of ACS lipid content to enhance wound healing. The fatty acid analysis was performed with GC-FID, and an LC-MS untargeted method was developed in order to the analyse the lipid profiles of the grafts was. The enhancement of wound healing by the ACS extract was investigated in vitro on HaCat cells. Our results showed that ACS had the highest content of PUFA (27.0 ± 1.43% of their total fatty acids), followed by HCS (20.6 ± 3.9%). The two grafts of bovine origin presented insignificant PUFA amounts. The majority of the PUFAs found in ACS were omega-3, and in HCS, they were omega-6. The untargeted lipidomics analysis demonstrated that ACS grafts were characterized by phosphatidylcholine containing either 20:5 or 22:6 omega-3 PUFA. The ACS lipid extract increased the HaCat cells migration and enhanced wound closure 4 hr earlier versus control. Our study demonstrated that ACS has a lipid profile that is distinct from other wound healing grafts, that PUFAs are maintained in ACS post-processing as phosphatidylcholine, and that ACS lipid content influences wound healing properties.


Assuntos
Derme Acelular , Ácidos Graxos Ômega-3/farmacologia , Pele Artificial , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular Transformada , Gadus morhua , Humanos
9.
Respir Res ; 20(1): 129, 2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31234850

RESUMO

BACKGROUND: Azithromycin (Azm) is a macrolide recognized for its disease-modifying effects and reduction in exacerbation of chronic airway diseases. It is not clear whether the beneficial effects of Azm are due to its anti-microbial activity or other pharmacological actions. We have shown that Azm affects the integrity of the bronchial epithelial barrier measured by increased transepithelial electrical resistance. To better understand these effects of Azm on bronchial epithelia we have investigated global changes in gene expression. METHODS: VA10 bronchial epithelial cells were treated with Azm and cultivated in air-liquid interface conditions for up to 22 days. RNA was isolated at days 4, 10 and 22 and analyzed using high-throughput RNA sequencing. qPCR and immunostaining were used to confirm key findings from bioinformatic analyses. Detailed assessment of cellular changes was done using microscopy, followed by characterization of the lipidomic profiles of the multivesicular bodies present. RESULTS: Bioinformatic analysis revealed that after 10 days of treatment genes encoding effectors of sterol and cholesterol metabolism were prominent. Interestingly, expression of genes associated with epidermal barrier differentiation, KRT1, CRNN, SPINK5 and DSG1, increased significantly at day 22. Together with immunostaining, these results suggest an epidermal differentiation pattern. We also found that Azm induced the formation of multivesicular and lamellar bodies in two different airway epithelial cell lines. Lipidomic analysis revealed that Azm was entrapped in multivesicular bodies linked to different types of lipids, most notably palmitate and stearate. Furthermore, targeted analysis of lipid species showed accumulation of phosphatidylcholines, as well as ceramide derivatives. CONCLUSIONS: Taken together, we demonstrate how Azm might confer its barrier enhancing effects, via activation of epidermal characteristics and changes to intracellular lipid dynamics. These effects of Azm could explain the unexpected clinical benefit observed during Azm-treatment of patients with various lung diseases affecting barrier function.


Assuntos
Antibacterianos/farmacologia , Azitromicina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Corpos Multivesiculares/efeitos dos fármacos , Mucosa Respiratória/efeitos dos fármacos , Diferenciação Celular/fisiologia , Linhagem Celular , Epiderme/metabolismo , Humanos , Corpos Multivesiculares/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/metabolismo
10.
Int J Biochem Cell Biol ; 103: 99-104, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30114482

RESUMO

Epithelial to mesenchymal transition (EMT) is a developmental event characterized by phenotypic switching from a polarized epithelial phenotype to an unpolarized mesenchymal phenotype. Changes to plasma membrane function accompany EMT yet the differences in lipid composition of cells that have undergone EMT are relatively unexplored. To address this the lipidome of two cell models of EMT in breast epithelial tissue, D492 and HMLE, were analyzed by untargeted LC-MS. Detected masses were identified and their abundance was compared through multivariate statistical analysis. Considerable concordance was observed in eight lipid components between epithelial and mesenchymal cells in both cell models. Specifically, an increase in phosphatidylcholine and triacylglycerol were found to accompany EMT while phosphatidylcholine- and phosphatidylethanolamine plasmalogens, as well as diacylglycerols decreased. The most abundant fatty acid lengths were C16 and C18 but mesenchymal cells had on average shorter and more unsaturated fatty acids. The results are consistent with enhanced cell mobility post EMT and reflect a consequence of oxidative stress pre- and post EMT in breast epithelial tissue.


Assuntos
Transição Epitelial-Mesenquimal , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos , Glândulas Mamárias Humanas/metabolismo , Plasmalogênios/metabolismo , Células Epiteliais/citologia , Feminino , Humanos , Glândulas Mamárias Humanas/citologia
11.
Sci Rep ; 8(1): 6811, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717213

RESUMO

Endothelial dysfunction contributes to sepsis outcome. Metabolic phenotypes associated with endothelial dysfunction are not well characterised in part due to difficulties in assessing endothelial metabolism in situ. Here, we describe the construction of iEC2812, a genome scale metabolic reconstruction of endothelial cells and its application to describe metabolic changes that occur following endothelial dysfunction. Metabolic gene expression analysis of three endothelial subtypes using iEC2812 suggested their similar metabolism in culture. To mimic endothelial dysfunction, an in vitro sepsis endothelial cell culture model was established and the metabotypes associated with increased endothelial permeability and glycocalyx loss after inflammatory stimuli were quantitatively defined through metabolomics. These data and transcriptomic data were then used to parametrize iEC2812 and investigate the metabotypes of endothelial dysfunction. Glycan production and increased fatty acid metabolism accompany increased glycocalyx shedding and endothelial permeability after inflammatory stimulation. iEC2812 was then used to analyse sepsis patient plasma metabolome profiles and predict changes to endothelial derived biomarkers. These analyses revealed increased changes in glycan metabolism in sepsis non-survivors corresponding to metabolism of endothelial dysfunction in culture. The results show concordance between endothelial health and sepsis survival in particular between endothelial cell metabolism and the plasma metabolome in patients with sepsis.


Assuntos
Células Endoteliais/efeitos dos fármacos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Metaboloma , Sepse/metabolismo , Biomarcadores/sangue , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Ácidos Graxos/metabolismo , Glicocálix/química , Glicocálix/efeitos dos fármacos , Glicocálix/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Cinurenina/sangue , Lisofosfolipídeos/sangue , Modelos Biológicos , Óxido Nítrico/sangue , Permeabilidade , Polissacarídeos/química , Polissacarídeos/metabolismo , Prostaglandina D2/sangue , Sepse/classificação , Sepse/diagnóstico , Sepse/mortalidade , Esfingosina/análogos & derivados , Esfingosina/sangue , Análise de Sobrevida , Triptofano/análogos & derivados , Triptofano/sangue , Ácido gama-Aminobutírico/sangue
12.
Cell Death Dis ; 8(5): e2769, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492548

RESUMO

Protein tyrosine phosphatase 1B (PTP1B) is a well-known inhibitor of insulin signaling pathways and inhibitors against PTP1B are being developed as promising drug candidates for treatment of obesity. PTP1B has also been linked to breast cancer both as a tumor suppressor and as an oncogene. Furthermore, PTP1B has been shown to be a regulator of cell adhesion and migration in normal and cancer cells. In this study, we analyzed the PTP1B expression in normal breast tissue, primary breast cells and the breast epithelial cell line D492. In normal breast tissue and primary breast cells, PTP1B is widely expressed in both epithelial and stromal cells, with highest expression in myoepithelial cells and fibroblasts. PTP1B is widely expressed in branching structures generated by D492 when cultured in 3D reconstituted basement membrane (3D rBM). Inhibition of PTP1B in D492 and another mammary epithelial cell line HMLE resulted in reduced cell proliferation and induction of anoikis. These changes were seen when cells were cultured both in monolayer and in 3D rBM. PTP1B inhibition affected cell attachment, expression of cell adhesion proteins and actin polymerization. Moreover, epithelial to mesenchymal transition (EMT) sensitized cells to PTP1B inhibition. A mesenchymal sublines of D492 and HMLE (D492M and HMLEmes) were more sensitive to PTP1B inhibition than D492 and HMLE. Reversion of D492M to an epithelial state using miR-200c-141 restored resistance to detachment induced by PTP1B inhibition. In conclusion, we have shown that PTP1B is widely expressed in the human breast gland with highest expression in myoepithelial cells and fibroblasts. Inhibition of PTP1B in D492 and HMLE affects cell-cell adhesion and induces anoikis-like effects. Finally, cells with an EMT phenotype are more sensitive to PTP1B inhibitors making PTP1B a potential candidate for further studies as a target for drug development in cancer involving the EMT phenotype.


Assuntos
Anoikis , Comunicação Celular , Células Epiteliais/enzimologia , Regulação Enzimológica da Expressão Gênica , Glândulas Mamárias Humanas/enzimologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Proteína Tirosina Fosfatase não Receptora Tipo 1/biossíntese , Adesão Celular , Linhagem Celular , Feminino , Humanos , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
13.
Cancer Lett ; 396: 117-129, 2017 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-28323032

RESUMO

Epithelial to mesenchymal transition (EMT) has implications in tumor progression and metastasis. Metabolic alterations have been described in cancer development but studies focused on the metabolic re-wiring that takes place during EMT are still limited. We performed metabolomics profiling of a breast epithelial cell line and its EMT derived mesenchymal phenotype to create genome-scale metabolic models descriptive of both cell lines. Glycolysis and OXPHOS were higher in the epithelial phenotype while amino acid anaplerosis and fatty acid oxidation fueled the mesenchymal phenotype. Through comparative bioinformatics analysis, PPAR-γ1, PPAR- γ2 and AP-1 were found to be the most influential transcription factors associated with metabolic re-wiring. In silico gene essentiality analysis predicts that the LAT1 neutral amino acid transporter is essential for mesenchymal cell survival. Our results define metabolic traits that distinguish an EMT derived mesenchymal cell line from its epithelial progenitor and may have implications in cancer progression and metastasis. Furthermore, the tools presented here can aid in identifying critical metabolic nodes that may serve as therapeutic targets aiming to prevent EMT and inhibit metastatic dissemination.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Mama/metabolismo , Mama/patologia , Neoplasias da Mama/genética , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Metabolômica
14.
PLoS Comput Biol ; 12(6): e1004924, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27253373

RESUMO

Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.


Assuntos
Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Receptores ErbB/metabolismo , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Receptor Cross-Talk/fisiologia , Linhagem Celular , Simulação por Computador , Humanos , Transdução de Sinais/fisiologia
15.
Biosens Bioelectron ; 63: 218-231, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25105943

RESUMO

Culture of cells using various microfluidic devices is becoming more common within experimental cell biology. At the same time, a technological radiation of microfluidic cell culture device designs is currently in progress. Ultimately, the utility of microfluidic cell culture will be determined by its capacity to permit new insights into cellular function. Especially insights that would otherwise be difficult or impossible to obtain with macroscopic cell culture in traditional polystyrene dishes, flasks or well-plates. Many decades of heuristic optimization have gone into perfecting conventional cell culture devices and protocols. In comparison, even for the most commonly used microfluidic cell culture devices, such as those fabricated from polydimethylsiloxane (PDMS), collective understanding of the differences in cellular behavior between microfluidic and macroscopic culture is still developing. Moving in vitro culture from macroscopic culture to PDMS based devices can come with unforeseen challenges. Changes in device material, surface coating, cell number per unit surface area or per unit media volume may all affect the outcome of otherwise standard protocols. In this review, we outline some of the advantages and challenges that may accompany a transition from macroscopic to microfluidic cell culture. We focus on decisive factors that distinguish macroscopic from microfluidic cell culture to encourage a reconsideration of how macroscopic cell culture principles might apply to microfluidic cell culture.


Assuntos
Técnicas de Cultura Celular por Lotes/instrumentação , Materiais Biocompatíveis/química , Dimetilpolisiloxanos/química , Técnicas Analíticas Microfluídicas/instrumentação , Animais , Células Cultivadas , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos
16.
Anal Chem ; 86(8): 3985-93, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24640936

RESUMO

Metabolomics is a rapidly evolving analytical approach in life and health sciences. The structural elucidation of the metabolites of interest remains a major analytical challenge in the metabolomics workflow. Here, we investigate the use of ion mobility as a tool to aid metabolite identification. Ion mobility allows for the measurement of the rotationally averaged collision cross-section (CCS), which gives information about the ionic shape of a molecule in the gas phase. We measured the CCSs of 125 common metabolites using traveling-wave ion mobility-mass spectrometry (TW-IM-MS). CCS measurements were highly reproducible on instruments located in three independent laboratories (RSD < 5% for 99%). We also determined the reproducibility of CCS measurements in various biological matrixes including urine, plasma, platelets, and red blood cells using ultra performance liquid chromatography (UPLC) coupled with TW-IM-MS. The mean RSD was < 2% for 97% of the CCS values, compared to 80% of retention times. Finally, as proof of concept, we used UPLC-TW-IM-MS to compare the cellular metabolome of epithelial and mesenchymal cells, an in vitro model used to study cancer development. Experimentally determined and computationally derived CCS values were used as orthogonal analytical parameters in combination with retention time and accurate mass information to confirm the identity of key metabolites potentially involved in cancer. Thus, our results indicate that adding CCS data to searchable databases and to routine metabolomics workflows will increase the identification confidence compared to traditional analytical approaches.


Assuntos
Íons/química , Metabolômica/métodos , Antineoplásicos/metabolismo , Análise Química do Sangue/métodos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Bases de Dados de Compostos Químicos , Transição Epitelial-Mesenquimal , Gases , Humanos , Espectrometria de Massas , Metaboloma , Reprodutibilidade dos Testes , Urinálise/métodos
17.
PLoS One ; 9(2): e88683, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24533135

RESUMO

The upper airways are lined with a pseudostratified bronchial epithelium that forms a barrier against unwanted substances in breathing air. The transcription factor p63, which is important for stratification of skin epithelium, has been shown to be expressed in basal cells of the lungs and its ΔN isoform is recognized as a key player in squamous cell lung cancer. However, the role of p63 in formation and maintenance of bronchial epithelia is largely unknown. The objective of the current study was to determine the expression pattern of the ΔN and TA isoforms of p63 and the role of p63 in the development and maintenance of pseudostratified lung epithelium in situ and in culture. We used a human bronchial epithelial cell line with basal cell characteristics (VA10) to model bronchial epithelium in an air-liquid interface culture (ALI) and performed a lentiviral-based silencing of p63 to characterize the functional and phenotypic consequences of p63 loss. We demonstrate that ΔNp63 is the major isoform in the human lung and its expression was exclusively found in the basal cells lining the basement membrane of the bronchial epithelium. Knockdown of p63 affected proliferation and migration of VA10 cells and facilitated cellular senescence. Expression of p63 is critical for epithelial repair as demonstrated by wound healing assays. Importantly, generation of pseudostratified VA10 epithelium in the ALI setup depended on p63 expression and goblet cell differentiation, which can be induced by IL-13 stimulation, was abolished by the p63 knockdown. After knockdown of p63 in primary bronchial epithelial cells they did not proliferate and showed marked senescence. We conclude that these results strongly implicate p63 in the formation and maintenance of differentiated pseudostratified bronchial epithelium.


Assuntos
Brônquios/metabolismo , Epitélio/metabolismo , Pulmão/metabolismo , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Apoptose , Diferenciação Celular , Linhagem Celular , Movimento Celular , Proliferação de Células , Sobrevivência Celular , Senescência Celular , Regulação da Expressão Gênica , Humanos , Interleucina-13/metabolismo , Lentivirus/metabolismo , Fenótipo , Isoformas de Proteínas/fisiologia , Cicatrização
18.
Am J Respir Crit Care Med ; 189(7): 812-24, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24467627

RESUMO

RATIONALE: Progress has been made in understanding how the cystic fibrosis (CF) basic defect produces lung infection susceptibility. However, it remains unclear why CF exclusively leads to chronic infections that are noninvasive and highly resistant to eradication. Although biofilm formation has been suggested as a mechanism, recent work raises questions about the role of biofilms in CF. OBJECTIVES: To learn how airway conditions attributed to CF transmembrane regulator dysfunction could lead to chronic infection, and to determine if biofilm-inhibiting genetic adaptations that are common in CF isolates affect the capacity of Pseudomonas aeruginosa to develop chronic infection phenotypes. METHODS: We studied P. aeruginosa isolates grown in agar and mucus gels containing sputum from patients with CF and measured their susceptibility to killing by antibiotics and host defenses. We also measured the invasive virulence of P. aeruginosa grown in sputum gels using airway epithelial cells and a murine infection model. MEASUREMENTS AND MAIN RESULTS: We found that conditions likely to result from increased mucus density, hyperinflammation, and defective bacterial killing could all cause P. aeruginosa to grow in bacterial aggregates. Aggregated growth markedly increased the resistance of bacteria to killing by host defenses and antibiotics, and reduced their invasiveness. In addition, we found that biofilm-inhibiting mutations do not impede aggregate formation in gel growth environments. CONCLUSIONS: Our findings suggest that conditions associated with several CF pathogenesis hypotheses could cause the noninvasive and resistant infection phenotype, independently of the bacterial functions needed for biofilm formation.


Assuntos
Fibrose Cística/microbiologia , Infecções por Pseudomonas/etiologia , Pseudomonas aeruginosa/patogenicidade , Animais , Biofilmes , Biomarcadores/metabolismo , Doença Crônica , Fibrose Cística/complicações , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Farmacorresistência Bacteriana , Marcadores Genéticos , Humanos , Elastase de Leucócito/metabolismo , Camundongos , Testes de Sensibilidade Microbiana , Fenótipo , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Pseudomonas aeruginosa/fisiologia , Escarro/metabolismo , Escarro/microbiologia , Virulência
19.
Biomed Opt Express ; 4(9): 1749-58, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24049695

RESUMO

The rapid growth of microfluidic cell culturing in biological and biomedical research and industry calls for fast, non-invasive and reliable methods of evaluating conditions such as pH inside a microfluidic system. We show that by careful calibration it is possible to measure pH within microfluidic chambers with high accuracy and precision, using a direct single-pass measurement of light absorption in a commercially available phenol-red-containing cell culture medium. The measurement is carried out using a standard laboratory microscope and, contrary to previously reported methods, requires no modification of the microfluidic device design. We demonstrate the validity of this method by measuring absorption of light transmitted through 30-micrometer thick microfluidic chambers, using an inverted microscope fitted with a scientific-grade digital camera and two bandpass filters. In the pH range of 7-8, our measurements have a standard deviation and absolute error below 0.05 for a measurement volume smaller than 4 nL.

20.
Pharm Res ; 30(3): 781-91, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23135824

RESUMO

PURPOSE: To determine the integrity and permeability properties of the immortalized human VA10 bronchial epithelial cell line for its suitability as an in vitro drug permeation model. METHODS: Cells were grown under liquid-covered culture (LCC) or air-liquid interface (ALI) culture, characterized using electron microscopy and immunostaining. Integrity was measured using transepithelial electrical resistance (TER) and permeability of fluorescein sodium (Flu-Na). General permeability was established with dextrans and model drugs and P-glycoprotein (P-gp) function determined with bidirectional flux of rhodamine-123. RESULTS: ALI culture resulted in 2-3 cell layers with differentiation towards ciliated cells but LCC showed undifferentiated morphology. VA10 cells formed TJ, with higher TER in LCC than ALI (∼2500 vs. ∼1200 Ω*cm(2)) and Flu-Na permeability ∼1-2 × 10(-7) cm/s. ALI cultured cells expressed P-gp and distinguished between compounds depending on lipophilicity and size, consistent with previous data from Calu-3 and 16HBE14o-cell lines. CONCLUSIONS: ALI cultured cell layers capture the in vivo-like phenotype of bronchial epithelium and form functional cell barrier capable of discriminating between compounds depending on physiochemical properties. The VA10 cell line is an important alternative to previously published cell lines and a relevant model to study airway drug delivery in vitro.


Assuntos
Álcoois/farmacocinética , Brônquios/citologia , Dextranos/farmacocinética , Células Epiteliais/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular , Células Epiteliais/citologia , Humanos , Permeabilidade , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...