Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38643981

RESUMO

Lynch syndrome (LS) is the most prevalent heritable form of colorectal cancer (CRC). Its early onset and high lifetime risk for CRC emphasize the necessity for effective chemoprevention. NFE2L2 (NRF2) is often considered a potential druggable target, and many chemopreventive compounds do induce NRF2. However, while NRF2 counteracts oxidative stress, it is also overexpressed in CRC and may promote tumorigenesis. Herein, we evaluated the role of NRF2 in prevention of LS-associated neoplasia. We found an increased levels of NRF2 in intestinal epithelia of mice with intestinal epithelial-specific Msh2 deletion (MSH2ΔIEC) as compared to C57BL/6 (wild type) mice, as well as an increase in downstream NRF2 targets Nqo1 and Gclc. Likewise, NRF2 levels were increased in human MSH2-deficient LS tumors compared to healthy controls. In silico analysis of a publicly accessible RNA-sequencing LS dataset also found an increase in downstream NRF2 targets. Upon crossing MSH2ΔIEC with Nrf2null mice (MSH2ΔIECNrf2null), we unexpectedly found reduced tumorigenesis in MSH2ΔIECNrf2null compared to MSH2ΔIEC after 40 weeks. This occurred despite an increase in oxidative damage in MSH2ΔIECNrf2null mice. Loss of NRF2 impaired proliferation as seen by Ki67 intestinal staining and in organoid cultures. This was accompanied by diminished WNT/ß-catenin signaling. Apoptosis was unaffected. Microbial alpha-diversity increased over time with loss of NRF2 based upon 16S rRNA gene amplicon sequencing of murine fecal samples. Altogether, we show that NRF2 protein levels are increased in MSH2-deficiency and associated neoplasia, but loss of NRF2 attenuates tumorigenesis. Activation of NRF2 may not be a feasible strategy for chemoprevention in LS.

3.
Cell Mol Gastroenterol Hepatol ; 16(5): 847-856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37572734

RESUMO

BACKGROUND & AIMS: Glucagon-like peptide (GLP)-2 may exert antifibrotic effects on hepatic stellate cells (HSCs). Thus, we aimed to test whether application of the GLP-2 analogue teduglutide has hepatoprotective and antifibrotic effects in the Mdr2/Abcb4-/- mouse model of sclerosing cholangitis displaying hepatic inflammation and fibrosis. METHODS: Mdr2-/- mice were injected daily for 4 weeks with teduglutide followed by gene expression profiling (bulk liver; isolated HSCs) and immunohistochemistry. Activated HSCs (LX2 cells) and immortalized human hepatocytes and human intestinal organoids were treated with GLP-2. mRNA profiling by reverse transcription polymerase chain reaction and electrophoretic mobility shift assay using cytosolic and nuclear protein extracts was performed. RESULTS: Hepatic inflammation, fibrosis, and reactive cholangiocyte phenotype were improved in GLP-2-treated Mdr2-/- mice. Primary HSCs isolated from Mdr2-/- mice and LX2 cells exposed to GLP-2 in vitro displayed significantly increased mRNA expression levels of NR4a1/Nur77 (P < .05). Electrophoretic mobility shift assay revealed an increased nuclear NR4a1 binding after GLP-2 treatment in LX2 cells. Moreover, GLP-2 alleviated the Tgfß-mediated reduction of NR4a1 nuclear binding activity. In vivo, GLP-2 treatment of Mdr2-/- mice resulted in increased intrahepatic levels of muricholic acids (accordingly Cyp2c70 mRNA expression was significantly increased), and in reduced mRNA levels of Cyp7a1 and FXR. Serum Fgf15 levels were increased in Mdr2-/- mice treated with GLP-2. Accordingly, GLP-2 treatment of human intestinal organoids activated their FXR-FGF19 signaling axis. CONCLUSIONS: GLP-2 treatment increased NR4a1/Nur77 activation in HSCs, subsequently attenuating their activation. GLP-2 promoted intestinal Fxr-Fgf15/19 signaling resulting in reduced Cyp7a1 and increased Cyp2c70 expression in the liver, contributing to hepatoprotective and antifibrotic effects of GLP-2 in the Mdr2-/- mouse model.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Humanos , Animais , Células Estreladas do Fígado/metabolismo , Camundongos Knockout , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Modelos Animais de Doenças , RNA Mensageiro/metabolismo , Inflamação/metabolismo
5.
Gastroenterology ; 161(4): 1245-1256.e20, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34146566

RESUMO

BACKGROUND & AIMS: Irritable bowel syndrome (IBS) and inflammatory bowel diseases result in a substantial reduction in quality of life and a considerable socioeconomic impact. In IBS, diagnosis and treatment options are limited, but evidence for involvement of the gut microbiome in disease pathophysiology is emerging. Here we analyzed the prevalence of endoscopically visible mucosal biofilms in gastrointestinal disease and associated changes in microbiome composition and metabolism. METHODS: The presence of mucosal biofilms was assessed in 1426 patients at 2 European university-based endoscopy centers. One-hundred and seventeen patients were selected for in-depth molecular and microscopic analysis using 16S ribosomal RNA gene amplicon-sequencing of colonic biopsies and fecal samples, confocal microscopy with deep learning-based image analysis, scanning electron microscopy, metabolomics, and in vitro biofilm formation assays. RESULTS: Biofilms were present in 57% of patients with IBS and 34% of patients with ulcerative colitis compared with 6% of controls (P < .001). These yellow-green adherent layers of the ileum and right-sided colon were microscopically confirmed to be dense bacterial biofilms. 16S-sequencing links the presence of biofilms to a dysbiotic gut microbiome, including overgrowth of Escherichia coli and Ruminococcus gnavus. R. gnavus isolates cultivated from patient biofilms also formed biofilms in vitro. Metabolomic analysis found an accumulation of bile acids within biofilms that correlated with fecal bile acid excretion, linking this phenotype with a mechanism of diarrhea. CONCLUSIONS: The presence of mucosal biofilms is an endoscopic feature in a subgroup of IBS and ulcerative colitis with disrupted bile acid metabolism and bacterial dysbiosis. They provide novel insight into the pathophysiology of IBS and ulcerative colitis, illustrating that biofilm can be seen as a tipping point in the development of dysbiosis and disease.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Colite Ulcerativa/microbiologia , Colo/microbiologia , Colonoscopia , Microbioma Gastrointestinal , Mucosa Intestinal/microbiologia , Síndrome do Intestino Irritável/microbiologia , Áustria , Bactérias/metabolismo , Bactérias/ultraestrutura , Estudos de Casos e Controles , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Colo/metabolismo , Colo/patologia , Aprendizado Profundo , Alemanha , Humanos , Interpretação de Imagem Assistida por Computador , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Metabolômica , Microscopia Confocal , Microscopia Eletrônica de Varredura , Valor Preditivo dos Testes , Ribotipagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...