Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Commun Biol ; 6(1): 22, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635485

RESUMO

Patients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors. Genetically or pharmacologically disrupting OxPhos approximately doubles cellular energy expenditure. This cell-autonomous state of hypermetabolism occurs despite near-normal OxPhos coupling efficiency, excluding uncoupling as a general mechanism. Instead, hypermetabolism is associated with mitochondrial DNA instability, activation of the integrated stress response (ISR), and increased extracellular secretion of age-related cytokines and metabokines including GDF15. In parallel, OxPhos defects accelerate telomere erosion and epigenetic aging per cell division, consistent with evidence that excess energy expenditure accelerates biological aging. To explore potential mechanisms for these effects, we generate a longitudinal RNASeq and DNA methylation resource dataset, which reveals conserved, energetically demanding, genome-wide recalibrations. Taken together, these findings highlight the need to understand how OxPhos defects influence the energetic cost of living, and the link between hypermetabolism and aging in cells and patients with mitochondrial diseases.


Assuntos
Doenças Mitocondriais , Fosforilação Oxidativa , Humanos , Longevidade , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
2.
Radiology ; 300(3): 626-632, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156298

RESUMO

Background Pyruvate dehydrogenase (PDH) and lactate dehydrogenase are essential for adenosine triphosphate production in skeletal muscle. At the onset of exercise, oxidation of glucose and glycogen is quickly enabled by dephosphorylation of PDH. However, direct measurement of PDH flux in exercising human muscle is daunting, and the net effect of covalent modification and other control mechanisms on PDH flux has not been assessed. Purpose To demonstrate the feasibility of assessing PDH activation and changes in pyruvate metabolism in human skeletal muscle after the onset of exercise using carbon 13 (13C) MRI with hyperpolarized (HP) [1-13C]-pyruvate. Materials and Methods For this prospective study, sedentary adults in good general health (mean age, 42 years ± 18 [standard deviation]; six men) were recruited from August 2019 to September 2020. Subgroups of the participants were injected with HP [1-13C]-pyruvate at resting, during plantar flexion exercise, or 5 minutes after exercise during recovery. In parallel, hydrogen 1 arterial spin labeling MRI was performed to estimate muscle tissue perfusion. An unpaired t test was used for comparing 13C data among the states. Results At rest, HP [1-13C]-lactate and [1-13C]-alanine were detected in calf muscle, but [13C]-bicarbonate was negligible. During moderate flexion-extension exercise, total HP 13C signals (tC) increased 2.8-fold because of increased muscle perfusion (P = .005), and HP [1-13C]-lactate-to-tC ratio increased 1.7-fold (P = .04). HP [13C]-bicarbonate-to-tC ratio increased 8.4-fold (P = .002) and returned to the resting level 5 minutes after exercise, whereas the lactate-to-tC ratio continued to increase to 2.3-fold as compared with resting (P = .008). Conclusion Lactate and bicarbonate production from hyperpolarized (HP) [1-carbon 13 {13C}]-pyruvate in skeletal muscle rapidly reflected the onset and the termination of exercise. These results demonstrate the feasibility of imaging skeletal muscle metabolism using HP [1-13C]-pyruvate MRI and the sensitivity of in vivo pyruvate metabolism to exercise states. © RSNA, 2021 Online supplemental material is available for this article.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Exercício Físico , Músculo Esquelético/metabolismo , Ácido Pirúvico/metabolismo , Adulto , Bicarbonatos/metabolismo , Estudos de Viabilidade , Humanos , Ácido Láctico/metabolismo , Masculino , Estudos Prospectivos
3.
J Clin Invest ; 131(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33463549

RESUMO

Mitochondrial disorders represent a large collection of rare syndromes that are difficult to manage both because we do not fully understand biochemical pathogenesis and because we currently lack facile markers of severity. The m.3243A>G variant is the most common heteroplasmic mitochondrial DNA mutation and underlies a spectrum of diseases, notably mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). To identify robust circulating markers of m.3243A>G disease, we first performed discovery proteomics, targeted metabolomics, and untargeted metabolomics on plasma from a deeply phenotyped cohort (102 patients, 32 controls). In a validation phase, we measured concentrations of prioritized metabolites in an independent cohort using distinct methods. We validated 20 analytes (1 protein, 19 metabolites) that distinguish patients with MELAS from controls. The collection includes classic (lactate, alanine) and more recently identified (GDF-15, α-hydroxybutyrate) mitochondrial markers. By mining untargeted mass-spectra we uncovered 3 less well-studied metabolite families: N-lactoyl-amino acids, ß-hydroxy acylcarnitines, and ß-hydroxy fatty acids. Many of these 20 analytes correlate strongly with established measures of severity, including Karnofsky status, and mechanistically, nearly all markers are attributable to an elevated NADH/NAD+ ratio, or NADH-reductive stress. Our work defines a panel of organelle function tests related to NADH-reductive stress that should enable classification and monitoring of mitochondrial disease.


Assuntos
Síndrome MELAS/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alanina/sangue , Biomarcadores/sangue , Criança , Pré-Escolar , Feminino , Fator 15 de Diferenciação de Crescimento/sangue , Humanos , Hidroxibutiratos/sangue , Ácido Láctico/sangue , Síndrome MELAS/genética , Masculino , Pessoa de Meia-Idade , Mutação , Índice de Gravidade de Doença
4.
Orphanet J Rare Dis ; 15(1): 187, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33054807

RESUMO

BACKGROUND: International patient registries are of particular importance for rare disorders, as they may contribute to overcome the lack of knowledge derived from low number of patients and limited awareness of these diseases, and help to learn more about their geographical or population-based specificities, which is relevant for research purposes and for promoting better standards of care and diagnosis. Our objective was to create and implement a European registry for patients with McArdle disease and other muscle glycogenoses (EUROMAC) and to disseminate the knowledge of these disorders. RESULTS: Teams from nine different countries (United Kingdom, Spain, Italy, France, Germany, Denmark, Greece, Turkey and USA) created a consortium that developed the first European registry dedicated to rare muscle glycogenoses. A work plan was implemented to design the database and platform that constitute the registry, by choosing clinical, genetics and molecular variables of interest, based on experience gained from previous national registries for similar metabolic disorders. Among dissemination activities, several teaching events were organized in different countries, especially those where the consortium considered the awareness of these diseases needs to be promoted among health professionals and patients. CONCLUSION: EUROMAC represents a step forward in the knowledge of those disorders to which it is dedicated, and will have relevant clinical outcomes at the diagnostic, epidemiological, clinical and research level.


Assuntos
Doença de Depósito de Glicogênio Tipo V , Doença de Depósito de Glicogênio , Feminino , França , Alemanha , Doença de Depósito de Glicogênio Tipo V/genética , Humanos , Itália , Masculino , Músculos , Qualidade de Vida , Sistema de Registros , Espanha , Turquia , Reino Unido
5.
Neuromuscul Disord ; 30(9): 734-741, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32811700

RESUMO

McArdle disease results from a lack of muscle glycogen phosphorylase in skeletal muscle tissue. Regenerating skeletal muscle fibres can express the brain glycogen phosphorylase isoenzyme. Stimulating expression of this enzyme could be a therapeutic strategy. Animal model studies indicate that sodium valproate (VPA) can increase expression of phosphorylase in skeletal muscle affected with McArdle disease. This study was designed to assess whether VPA can modify expression of brain phosphorylase isoenzyme in people with McArdle disease. This phase II, open label, feasibility pilot study to assess efficacy of six months treatment with VPA (20 mg/kg/day) included 16 people with McArdle disease. Primary outcome assessed changes in VO2peak during an incremental cycle test. Secondary outcomes included: phosphorylase enzyme expression in post-treatment muscle biopsy, total distance walked in 12 min, plasma lactate change (forearm exercise test) and quality of life (SF36). Safety parameters. 14 participants completed the trial, VPA treatment was well tolerated; weight gain was the most frequently reported drug-related adverse event. There was no clinically meaningful change in any of the primary or secondary outcome measures including: VO2peak, 12 min walk test and muscle biopsy to look for a change in the number of phosphorylase positive fibres between baseline and 6 months of treatment. Although this was a small open label feasibility study, it suggests that a larger randomised controlled study of VPA, may not be worthwhile.


Assuntos
Encéfalo/patologia , Glicogênio Fosforilase/metabolismo , Músculo Esquelético/citologia , Ácido Valproico/uso terapêutico , Animais , Estudos de Viabilidade , Glicogênio Fosforilase/farmacologia , Humanos , Fibras Musculares Esqueléticas/patologia , Fosforilases/metabolismo , Projetos Piloto , Qualidade de Vida
6.
Neurology ; 94(7): e687-e698, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31896620

RESUMO

OBJECTIVE: To investigate the safety and efficacy of escalating doses of the semi-synthetic triterpenoid omaveloxolone in patients with mitochondrial myopathy. METHODS: In cohorts of 8-13, 53 participants were randomized double-blind to 12 weeks of treatment with omaveloxolone 5, 10, 20, 40, 80, or 160 mg, or placebo. Outcome measures were change in peak cycling exercise workload (primary), in 6-minute walk test (6MWT) distance (secondary), and in submaximal exercise heart rate and plasma lactate (exploratory). RESULTS: No differences in peak workload or 6MWT were observed at week 12 with omaveloxolone treatment vs placebo for all omaveloxolone dose groups. In contrast, omaveloxolone 160 mg reduced heart rate at week 12 by 12.0 ± 4.6 bpm (SE) during submaximal exercise vs placebo, p = 0.01, and by 8.7 ± 3.5 bpm (SE) vs baseline, p = 0.02. Similarly, blood lactate was 1.4 ± 0.7 mM (SE) lower vs placebo, p = 0.04, and 1.6 ± 0.5 mM (SE) lower vs baseline at week 12, p = 0.003, with omaveloxolone 160 mg treatment. Adverse events were generally mild and infrequent. CONCLUSIONS: Omaveloxolone 160 mg was well-tolerated, and did not lead to change in the primary outcome measure, but improved exploratory endpoints lowering heart rate and lactate production during submaximal exercise, consistent with improved mitochondrial function and submaximal exercise tolerance. Therefore, omaveloxolone potentially benefits patients with mitochondrial myopathy, which encourages further investigations of omaveloxolone in this patient group. CLINICALTRIALSGOV IDENTIFIER: NCT02255422. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that, for patients with mitochondrial myopathy, omaveloxolone compared to placebo did not significantly change peak exercise workload.


Assuntos
Anti-Inflamatórios/uso terapêutico , Miopatias Mitocondriais/tratamento farmacológico , Triterpenos/uso terapêutico , Adulto , Anti-Inflamatórios/efeitos adversos , Biomarcadores/sangue , Relação Dose-Resposta a Droga , Método Duplo-Cego , Exercício Físico , Teste de Esforço , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Ácido Láctico/sangue , Masculino , Pessoa de Meia-Idade , Miopatias Mitocondriais/fisiopatologia , Fator 2 Relacionado a NF-E2/metabolismo , Resultado do Tratamento , Triterpenos/efeitos adversos
7.
Ann Clin Transl Neurol ; 6(10): 1949-1960, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31520525

RESUMO

OBJECTIVE: To study if treatment with triheptanoin, a 7-carbon triglyceride, improves exercise tolerance in patients with McArdle disease. McArdle patients have a complete block in glycogenolysis and glycogen-dependent expansion of tricarboxylic acid cycle (TCA), which may restrict fat oxidation. We hypothesized that triheptanoin metabolism generates substrates for the TCA, which potentially boosts fat oxidation and improves exercise tolerance in McArdle disease. METHODS: Double-blind, placebo-controlled, crossover study in patients with McArdle disease completing two treatment periods of 14 days each with a triheptanoin or placebo diet (1 g/kg/day). Primary outcome was change in mean heart rate during 20 min submaximal exercise on a cycle ergometer. Secondary outcomes were change in peak workload and oxygen uptake along with changes in blood metabolites and respiratory quotients. RESULTS: Nineteen of 22 patients completed the trial. Malate levels rose on triheptanoin treatment versus placebo (8.0 ± SD2.3 vs. 5.5 ± SD1.8 µmol/L, P < 0.001), but dropped from rest to exercise (P < 0.001). There was no difference in exercise heart rates between triheptanoin (120 ± SD16 bpm) and placebo (121 ± SD16 bpm) treatments. Compared with placebo, triheptanoin did not change the submaximal respiratory quotient (0.82 ± SD0.05 vs. 0.84 ± SD0.03), peak workload (105 ± SD38 vs. 102 ± SD31 Watts), or peak oxygen uptake (1938 ± SD499 vs. 1977 ± SD380 mL/min). INTERPRETATION: Despite increased resting plasma malate with triheptanoin, the increase was insufficient to generate a normal TCA turnover during exercise and the treatment has no effect on exercise capacity or oxidative metabolism in patients with McArdle disease.


Assuntos
Tolerância ao Exercício , Doença de Depósito de Glicogênio Tipo V/dietoterapia , Doença de Depósito de Glicogênio Tipo V/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Oxigênio/metabolismo , Triglicerídeos/farmacologia , Adulto , Idoso , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Triglicerídeos/administração & dosagem , Adulto Jovem
8.
Am J Physiol Regul Integr Comp Physiol ; 317(4): R563-R570, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31433672

RESUMO

Long-term rehabilitative strategies are important for individuals with well-healed burn injuries. Such information is particularly critical because patients are routinely surviving severe burn injuries given medical advances in the acute care setting. The purpose of this study was to test the hypothesis that a 6-mo community-based exercise training program will increase maximal aerobic capacity (V̇o2max) in subjects with prior burn injuries, with the extent of that increase influenced by the severity of the burn injury (i.e., percent body surface area burned). Maximal aerobic capacity (indirect calorimetry) and skeletal muscle oxidative enzyme activity (biopsy of the vastus lateralis muscle) were measured pre- and postexercise training in noninjured control subjects (n = 11) and in individuals with well-healed burn injuries (n = 13, moderate body surface area burned; n = 20, high body surface area burned). Exercise training increased V̇o2max in all groups (control: 15 ± 5%; moderate body surface area: 11 ± 3%; high body surface area: 11 ± 2%; P < 0.05), though the magnitude of this improvement did not differ between groups (P = 0.7). Exercise training also increased the activity of the skeletal muscle oxidative enzymes citrate synthase (P < 0.05) and cytochrome c oxidase (P < 0.05), an effect that did not differ between groups (P = 0.2). These data suggest that 6 mo of progressive exercise training improves V̇o2max in individuals with burn injuries and that the magnitude of body surface area burned does not lessen this adaptive response.


Assuntos
Queimaduras , Terapia por Exercício , Exercício Físico , Consumo de Oxigênio/fisiologia , Adulto , Tolerância ao Exercício , Feminino , Humanos , Masculino
9.
Neurology ; 91(11): e1077-e1082, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30111548

RESUMO

OBJECTIVE: To study the variable clinical picture and exercise tolerance of patients with phosphoglycerate kinase (PGK) 1 deficiency and how it relates to residual PGK enzyme activity. METHODS: In this case series study, we evaluated 7 boys and men from 5 families with PGK1 deficiency. Five had pure muscle symptoms, while 2 also had mild intellectual disability with or without anemia. Muscle glycolytic and oxidative capacities were evaluated by an ischemic forearm exercise test and by cycle ergometry. RESULTS: Enzyme levels of PGK were 4% to 9% of normal in red cells and 5% to10% in muscle in pure myopathy patients and 2.6% in both muscle and red cells in the 2 patients with multisystem involvement. Patients with pure myopathy had greater increases in lactate with ischemic exercise (2-3 mmol/L) vs the 2 multisystem-affected patients (<1 mmol/L). Myopathy patients had higher oxidative capacity in cycle exercise vs multisystem affected patients (≈30 vs ≈15 mL/kg per minute). One multisystem-affected patient developed frank myoglobinuria after the short exercise test. CONCLUSIONS: This case series study of PGK1 deficiency suggests that the level of impaired glycolysis in PGK deficiency is a major determinant of phenotype. Lower glycolytic capacity in PGK1 deficiency seems to result in multisystem involvement and increased susceptibility to exertional rhabdomyolysis.


Assuntos
Tolerância ao Exercício/fisiologia , Doenças Genéticas Ligadas ao Cromossomo X/enzimologia , Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Erros Inatos do Metabolismo/enzimologia , Erros Inatos do Metabolismo/fisiopatologia , Fosfoglicerato Quinase/deficiência , Fosfoglicerato Quinase/metabolismo , Ergometria , Teste de Esforço , Doenças Genéticas Ligadas ao Cromossomo X/complicações , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Humanos , Deficiência Intelectual/sangue , Deficiência Intelectual/complicações , Deficiência Intelectual/enzimologia , Deficiência Intelectual/fisiopatologia , Ácido Láctico/sangue , Masculino , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/diagnóstico , Músculo Esquelético/metabolismo , Doenças Musculares/sangue , Doenças Musculares/complicações , Doenças Musculares/enzimologia , Doenças Musculares/fisiopatologia , Fenótipo , Fosfoglicerato Quinase/sangue
10.
J Biol Chem ; 293(21): 8297-8311, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29523684

RESUMO

Iron-sulfur (Fe-S) clusters are ancient cofactors in cells and participate in diverse biochemical functions, including electron transfer and enzymatic catalysis. Although cell lines derived from individuals carrying mutations in the Fe-S cluster biogenesis pathway or siRNA-mediated knockdown of the Fe-S assembly components provide excellent models for investigating Fe-S cluster formation in mammalian cells, these experimental strategies focus on the consequences of prolonged impairment of Fe-S assembly. Here, we constructed and expressed dominant-negative variants of the primary Fe-S biogenesis scaffold protein iron-sulfur cluster assembly enzyme 2 (ISCU2) in human HEK293 cells. This approach enabled us to study the early metabolic reprogramming associated with loss of Fe-S-containing proteins in several major cellular compartments. Using multiple metabolomics platforms, we observed a ∼12-fold increase in intracellular citrate content in Fe-S-deficient cells, a surge that was due to loss of aconitase activity. The excess citrate was generated from glucose-derived acetyl-CoA, and global analysis of cellular lipids revealed that fatty acid biosynthesis increased markedly relative to cellular proliferation rates in Fe-S-deficient cells. We also observed intracellular lipid droplet accumulation in both acutely Fe-S-deficient cells and iron-starved cells. We conclude that deficient Fe-S biogenesis and acute iron deficiency rapidly increase cellular citrate concentrations, leading to fatty acid synthesis and cytosolic lipid droplet formation. Our findings uncover a potential cause of cellular steatosis in nonadipose tissues.


Assuntos
Reprogramação Celular , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Enxofre/metabolismo , Aconitato Hidratase/metabolismo , Metabolismo Energético , Células HEK293 , Humanos , Redes e Vias Metabólicas
11.
Ann Neurol ; 83(1): 115-130, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29283441

RESUMO

OBJECTIVE: Single, large-scale deletions in mitochondrial DNA (mtDNA) are a common cause of mitochondrial disease. This study aimed to investigate the relationship between the genetic defect and molecular phenotype to improve understanding of pathogenic mechanisms associated with single, large-scale mtDNA deletions in skeletal muscle. METHODS: We investigated 23 muscle biopsies taken from adult patients (6 males/17 females with a mean age of 43 years) with characterized single, large-scale mtDNA deletions. Mitochondrial respiratory chain deficiency in skeletal muscle biopsies was quantified by immunoreactivity levels for complex I and complex IV proteins. Single muscle fibers with varying degrees of deficiency were selected from 6 patient biopsies for determination of mtDNA deletion level and copy number by quantitative polymerase chain reaction. RESULTS: We have defined 3 "classes" of single, large-scale deletion with distinct patterns of mitochondrial deficiency, determined by the size and location of the deletion. Single fiber analyses showed that fibers with greater respiratory chain deficiency harbored higher levels of mtDNA deletion with an increase in total mtDNA copy number. For the first time, we have demonstrated that threshold levels for complex I and complex IV deficiency differ based on deletion class. INTERPRETATION: Combining genetic and immunofluorescent assays, we conclude that thresholds for complex I and complex IV deficiency are modulated by the deletion of complex-specific protein-encoding genes. Furthermore, removal of mt-tRNA genes impacts specific complexes only at high deletion levels, when complex-specific protein-encoding genes remain. These novel findings provide valuable insight into the pathogenic mechanisms associated with these mutations. Ann Neurol 2018;83:115-130.


Assuntos
DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Deleção de Sequência/genética , Adulto , Idoso , Biópsia , Estudos de Coortes , Complexo I de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Deleção de Genes , Dosagem de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/patologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Fosforilação Oxidativa , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 114(31): 8402-8407, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28716914

RESUMO

McArdle disease and mitochondrial myopathy impair muscle oxidative phosphorylation (OXPHOS) by distinct mechanisms: the former by restricting oxidative substrate availability caused by blocked glycogen breakdown, the latter because of intrinsic respiratory chain defects. We applied metabolic profiling to systematically interrogate these disorders at rest, when muscle symptoms are typically minimal, and with exercise, when symptoms of premature fatigue and potential muscle injury are unmasked. At rest, patients with mitochondrial disease exhibit elevated lactate and reduced uridine; in McArdle disease purine nucleotide metabolites, including xanthine, hypoxanthine, and inosine are elevated. During exercise, glycolytic intermediates, TCA cycle intermediates, and pantothenate expand dramatically in both mitochondrial disease and control subjects. In contrast, in McArdle disease, these metabolites remain unchanged from rest; but urea cycle intermediates are increased, likely attributable to increased ammonia production as a result of exaggerated purine degradation. Our results establish skeletal muscle glycogen as the source of TCA cycle expansion that normally accompanies exercise and imply that impaired TCA cycle flux is a central mechanism of restricted oxidative capacity in this disorder. Finally, we report that resting levels of long-chain triacylglycerols in mitochondrial myopathy correlate with the severity of OXPHOS dysfunction, as indicated by the level of impaired O2 extraction from arterial blood during peak exercise. Our integrated analysis of exercise and metabolism provides unique insights into the biochemical basis of these muscle oxidative defects, with potential implications for their clinical management.


Assuntos
Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Doença de Depósito de Glicogênio Tipo V/patologia , Miopatias Mitocondriais/patologia , Músculo Esquelético/patologia , Adolescente , Adulto , Idoso , Ciclo do Ácido Cítrico/genética , Transporte de Elétrons/fisiologia , Feminino , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo V/genética , Frequência Cardíaca/fisiologia , Humanos , Masculino , Metaboloma/fisiologia , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Miopatias Mitocondriais/genética , Músculo Esquelético/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia , Triglicerídeos/metabolismo , Adulto Jovem
13.
Hum Mol Genet ; 25(23): 5178-5187, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28007899

RESUMO

ISCU myopathy is an inherited disease that primarily affects individuals of northern Swedish descent who share a single point mutation in the fourth intron of the ISCU gene. The current study shows correction of specific phenotypes associated with disease following treatment with an antisense oligonucleotide (ASO) targeted to the site of the mutation. We have shown that ASO treatment diminished aberrant splicing and increased ISCU protein levels in both patient fibroblasts and patient myotubes in a concentration dependent fashion. Upon ASO treatment, levels of SDHB in patient myotubular cell lines increased to levels observed in control myotubular cell lines. Additionally, we have shown that both patient fibroblast and myotubular cell lines displayed an increase in complex II activity with a concomitant decrease in succinate levels in patient myotubular cell lines after ASO treatment. Mitochondrial and cytosolic aconitase activities increased significantly following ASO treatment in patient myotubes. The current study suggests that ASO treatment may serve as a viable approach to correcting ISCU myopathy in patients.


Assuntos
Acidose Láctica/congênito , Proteínas Ferro-Enxofre/genética , Doenças Musculares/congênito , Oligonucleotídeos Antissenso/genética , Succinato Desidrogenase/genética , Acidose Láctica/genética , Acidose Láctica/patologia , Acidose Láctica/terapia , Feminino , Humanos , Íntrons/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Doenças Musculares/genética , Doenças Musculares/patologia , Doenças Musculares/terapia , Oligonucleotídeos Antissenso/uso terapêutico , Fenótipo , Mutação Puntual , Splicing de RNA/efeitos dos fármacos , Splicing de RNA/genética , Succinato Desidrogenase/biossíntese
14.
Am J Hum Genet ; 99(1): 217-27, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27374774

RESUMO

Complex I deficiency is the most common biochemical phenotype observed in individuals with mitochondrial disease. With 44 structural subunits and over 10 assembly factors, it is unsurprising that complex I deficiency is associated with clinical and genetic heterogeneity. Massively parallel sequencing (MPS) technologies including custom, targeted gene panels or unbiased whole-exome sequencing (WES) are hugely powerful in identifying the underlying genetic defect in a clinical diagnostic setting, yet many individuals remain without a genetic diagnosis. These individuals might harbor mutations in poorly understood or uncharacterized genes, and their diagnosis relies upon characterization of these orphan genes. Complexome profiling recently identified TMEM126B as a component of the mitochondrial complex I assembly complex alongside proteins ACAD9, ECSIT, NDUFAF1, and TIMMDC1. Here, we describe the clinical, biochemical, and molecular findings in six cases of mitochondrial disease from four unrelated families affected by biallelic (c.635G>T [p.Gly212Val] and/or c.401delA [p.Asn134Ilefs(∗)2]) TMEM126B variants. We provide functional evidence to support the pathogenicity of these TMEM126B variants, including evidence of founder effects for both variants, and establish defects within this gene as a cause of complex I deficiency in association with either pure myopathy in adulthood or, in one individual, a severe multisystem presentation (chronic renal failure and cardiomyopathy) in infancy. Functional experimentation including viral rescue and complexome profiling of subject cell lines has confirmed TMEM126B as the tenth complex I assembly factor associated with human disease and validates the importance of both genome-wide sequencing and proteomic approaches in characterizing disease-associated genes whose physiological roles have been previously undetermined.


Assuntos
Alelos , Complexo I de Transporte de Elétrons/deficiência , Proteínas de Membrana/genética , Doenças Mitocondriais/genética , Mutação/genética , Fenótipo , Adolescente , Adulto , Idade de Início , Sequência de Aminoácidos , Criança , Complexo I de Transporte de Elétrons/genética , Feminino , Humanos , Lactente , Masculino , Proteínas de Membrana/química , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
15.
Am J Hum Genet ; 97(2): 319-28, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26189817

RESUMO

Deficiencies in respiratory-chain complexes lead to a variety of clinical phenotypes resulting from inadequate energy production by the mitochondrial oxidative phosphorylation system. Defective expression of mtDNA-encoded genes, caused by mutations in either the mitochondrial or nuclear genome, represents a rapidly growing group of human disorders. By whole-exome sequencing, we identified two unrelated individuals carrying compound heterozygous variants in TRMT5 (tRNA methyltransferase 5). TRMT5 encodes a mitochondrial protein with strong homology to members of the class I-like methyltransferase superfamily. Both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory-chain-complex deficiencies in skeletal muscle, although the clinical presentation of the two affected subjects was remarkably different; one presented in childhood with failure to thrive and hypertrophic cardiomyopathy, and the other was an adult with a life-long history of exercise intolerance. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mitochondrial tRNA; this hypomodification was particularly prominent in skeletal muscle. Deficiency of the G37 modification was also detected in human cells subjected to TRMT5 RNAi. The pathogenicity of the detected variants was further confirmed in a heterologous yeast model and by the rescue of the molecular phenotype after re-expression of wild-type TRMT5 cDNA in cells derived from the affected individuals. Our study highlights the importance of post-transcriptional modification of mitochondrial tRNAs for faithful mitochondrial function.


Assuntos
Doenças Mitocondriais/genética , Modelos Moleculares , Processamento Pós-Transcricional do RNA/genética , RNA de Transferência/genética , tRNA Metiltransferases/genética , Sequência de Aminoácidos , Pareamento de Bases , Sequência de Bases , Exoma/genética , Mutação da Fase de Leitura/genética , Humanos , Doenças Mitocondriais/patologia , Dados de Sequência Molecular , Linhagem , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , tRNA Metiltransferases/química
16.
J Clin Endocrinol Metab ; 100(8): E1096-104, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26030324

RESUMO

CONTEXT: Patients with blocked muscle glycogen breakdown (McArdle disease) have severely reduced exercise capacity compared to healthy individuals and are not assumed to produce lactate during exercise. OBJECTIVES: The objectives were: 1) to quantify systemic and muscle lactate kinetics and oxidation rates and muscle energy utilization during exercise in patients with McArdle disease; and 2) to elucidate the role of lactate formation in muscle energy production. DESIGN AND SETTING: This was a single trial in a hospital. PARTICIPANTS: Participants were four patients with McArdle disease and seven healthy subjects. INTERVENTION: Patients and healthy controls were studied at rest, which was followed by 40 minutes of cycle-ergometer exercise at 60% of the patients' maximal oxygen uptake (∼35 W). MAIN OUTCOME MEASURES: Main outcome measures were systemic and leg skeletal muscle lactate, alanine, fatty acid, and glucose kinetics. RESULTS: McArdle patients had a marked decrease in plasma lactate concentration at the onset of exercise, and the concentration remained suppressed during exercise. A substantial leg net lactate uptake and subsequent oxidation occurred over the entire exercise period in patients, in contrast to a net lactate release or no exchange in the healthy controls. Despite a net lactate uptake by the active leg, a simultaneous unidirectional lactate release was observed in McArdle patients at rates that were similar to the healthy controls. CONCLUSION: Lactate is an important energy source for contracting skeletal muscle in patients with myophosphorylase deficiency. Although McArdle patients had leg net lactate consumption, a simultaneous release of lactate was observed at rates similar to that found in healthy individuals exercising at the same very low workload, suggesting that lactate formation is mandatory for muscle energy generation during exercise.


Assuntos
Metabolismo Energético , Exercício Físico/fisiologia , Doença de Depósito de Glicogênio Tipo V/metabolismo , Ácido Láctico/metabolismo , Músculo Esquelético/metabolismo , Adulto , Teste de Esforço , Feminino , Glicogenólise/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Esforço Físico/fisiologia , Adulto Jovem
18.
J Inherit Metab Dis ; 38(3): 551-63, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25326273

RESUMO

Glycogen storage diseases (GSD) are inborn errors of glycogen or glucose metabolism. In the GSDs that affect muscle, the consequence of a block in skeletal muscle glycogen breakdown or glucose use, is an impairment of muscular performance and exercise intolerance, owing to 1) an increase in glycogen storage that disrupts contractile function and/or 2) a reduced substrate turnover below the block, which inhibits skeletal muscle ATP production. Immobility is associated with metabolic alterations in muscle leading to an increased dependence on glycogen use and a reduced capacity for fatty acid oxidation. Such changes may be detrimental for persons with GSD from a metabolic perspective. However, exercise may alter skeletal muscle substrate metabolism in ways that are beneficial for patients with GSD, such as improving exercise tolerance and increasing fatty acid oxidation. In addition, a regular exercise program has the potential to improve general health and fitness and improve quality of life, if executed properly. In this review, we describe skeletal muscle substrate use during exercise in GSDs, and how blocks in metabolic pathways affect exercise tolerance in GSDs. We review the studies that have examined the effect of regular exercise training in different types of GSD. Finally, we consider how oral substrate supplementation can improve exercise tolerance and we discuss the precautions that apply to persons with GSD that engage in exercise.


Assuntos
Tolerância ao Exercício , Exercício Físico , Doença de Depósito de Glicogênio/classificação , Doença de Depósito de Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Metabolismo dos Carboidratos , Glucose/metabolismo , Glicogênio/metabolismo , Humanos , Metabolismo dos Lipídeos , Qualidade de Vida
19.
PLoS One ; 9(12): e114462, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474153

RESUMO

Accurate and reliable quantification of the abundance of mitochondrial DNA (mtDNA) molecules, both wild-type and those harbouring pathogenic mutations, is important not only for understanding the progression of mtDNA disease but also for evaluating novel therapeutic approaches. A clear understanding of the sensitivity of mtDNA measurement assays under different experimental conditions is therefore critical, however it is routinely lacking for most published mtDNA quantification assays. Here, we comprehensively assess the variability of two quantitative Taqman real-time PCR assays, a widely-applied MT-ND1/MT-ND4 multiplex mtDNA deletion assay and a recently developed MT-ND1/B2M singleplex mtDNA copy number assay, across a range of DNA concentrations and mtDNA deletion/copy number levels. Uniquely, we provide a specific guide detailing necessary numbers of sample and real-time PCR plate replicates for accurately and consistently determining a given difference in mtDNA deletion levels and copy number in homogenate skeletal muscle DNA.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias Musculares/genética , Adulto , Variações do Número de Cópias de DNA , Feminino , Deleção de Genes , Dosagem de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiologia , Músculo Esquelético/ultraestrutura , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes
20.
PLoS One ; 9(10): e108706, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25296331

RESUMO

Carbon-13 magnetic resonance spectroscopy (13C MRS) offers a noninvasive method to assess glycogen levels in skeletal muscle and to identify excess glycogen accumulation in patients with glycogen storage disease (GSD). Despite the clinical potential of the method, it is currently not widely used for diagnosis or for follow-up of treatment. While it is possible to perform acceptable 13C MRS at lower fields, the low natural abundance of 13C and the inherently low signal-to-noise ratio of 13C MRS makes it desirable to utilize the advantage of increased signal strength offered by ultra-high fields for more accurate measurements. Concomitant with this advantage, however, ultra-high fields present unique technical challenges that need to be addressed when studying glycogen. In particular, the question of measurement reproducibility needs to be answered so as to give investigators insight into meaningful inter-subject glycogen differences. We measured muscle glycogen levels in vivo in the calf muscle in three patients with McArdle disease (MD), one patient with phosphofructokinase deficiency (PFKD) and four healthy controls by performing 13C MRS at 7T. Absolute quantification of the MRS signal was achieved by using a reference phantom with known concentration of metabolites. Muscle glycogen concentration was increased in GSD patients (31.5±2.9 g/kg w. w.) compared with controls (12.4±2.2 g/kg w. w.). In three GSD patients glycogen was also determined biochemically in muscle homogenates from needle biopsies and showed a similar 2.5-fold increase in muscle glycogen concentration in GSD patients compared with controls. Repeated inter-subject glycogen measurements yield a coefficient of variability of 5.18%, while repeated phantom measurements yield a lower 3.2% system variability. We conclude that noninvasive ultra-high field 13C MRS provides a valuable, highly reproducible tool for quantitative assessment of glycogen levels in health and disease.


Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Doença de Depósito de Glicogênio/metabolismo , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...