Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; : e2953, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558271

RESUMO

Exotic annual grass invasion is a widespread threat to the integrity of sagebrush ecosystems in Western North America. Although many predictors of annual grass prevalence and native perennial vegetation have been identified, there remains substantial uncertainty about how regional-scale and local-scale predictors interact to determine vegetation heterogeneity, and how associations between vegetation and cattle grazing vary with environmental context. Here, we conducted a regionally extensive, one-season field survey across burned and unburned, grazed, public lands in Oregon and Idaho, with plots stratified by aspect and distance to water within pastures to capture variation in environmental context and grazing intensity. We analyzed regional-scale and local-scale patterns of annual grass, perennial grass, and shrub cover, and examined to what extent plot-level variation was contingent on pasture-level predictions of site favorability. Annual grasses were widespread at burned and unburned sites alike, contrary to assumptions of annual grasses depending on fire, and more common at lower elevations and higher temperatures regionally, as well as on warmer slopes locally. Pasture-level grazing pressure interacted with temperature such that annual grass cover was associated positively with grazing pressure at higher temperatures but associated negatively with grazing pressure at lower temperatures. This suggests that pasture-level temperature and grazing relationships with annual grass abundance are complex and context dependent, although the causality of this relationship deserves further examination. At the plot-level within pastures, annual grass cover did not vary with grazing metrics, but perennial cover did; perennial grasses, for example, had lower cover closer to water sources, but higher cover at higher dung counts within a pasture, suggesting contrasting interpretations of these two grazing proxies. Importantly for predictions of ecosystem response to temperature change, we found that pasture-level and plot-level favorability interacted: perennial grasses had a higher plot-level cover on cooler slopes, and this difference across topography was starkest in pastures that were less favorable for perennial grasses regionally. Understanding the mechanisms behind cross-scale interactions and contingent responses of vegetation to grazing in these increasingly invaded ecosystems will be critical to land management in a changing world.

2.
Trends Ecol Evol ; 38(11): 1085-1096, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37468343

RESUMO

Advances in restoration ecology are needed to guide ecological restoration in a variable and changing world. Coexistence theory provides a framework for how variability in environmental conditions and species interactions affects species success. Here, we conceptually link coexistence theory and restoration ecology. First, including low-density growth rates (LDGRs), a classic metric of coexistence, can improve abundance-based restoration goals, because abundances are sensitive to initial treatments and ongoing variability. Second, growth-rate partitioning, developed to identify coexistence mechanisms, can improve restoration practice by informing site selection and indicating necessary interventions (e.g., site amelioration or competitor removal). Finally, coexistence methods can improve restoration assessment, because initial growth rates indicate trajectories, average growth rates measure success, and growth partitioning highlights interventions needed in future.


Assuntos
Ecossistema , Modelos Biológicos , Ecologia
3.
Nat Ecol Evol ; 6(11): 1669-1675, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36123533

RESUMO

Biodiversity has widely been documented to enhance local community stability but whether such stabilizing effects of biodiversity extend to broader scales remains elusive. Here, we investigated the relationships between biodiversity and community stability in natural plant communities from quadrat (1 m2) to plot (400 m2) and regional (5-214 km2) scales and across broad climatic conditions, using an extensive plant community dataset from the National Ecological Observatory Network. We found that plant diversity provided consistent stabilizing effects on total community abundance across three nested spatial scales and climatic gradients. The strength of the stabilizing effects of biodiversity increased modestly with spatial scale and decreased as precipitation seasonality increased. Our findings illustrate the generality of diversity-stability theory across scales and climatic gradients, which provides a robust framework for understanding ecosystem responses to biodiversity and climate changes.


Assuntos
Biodiversidade , Ecossistema , Plantas , Mudança Climática
4.
Ecol Appl ; 32(7): e2649, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35560687

RESUMO

Restoration ecology commonly seeks to re-establish species of interest in degraded habitats. Despite a rich understanding of how succession influences re-establishment, there are several outstanding questions that remain unaddressed: are short-term abundances sufficient to determine long-term re-establishment success, and what factors contribute to unpredictable restorations outcomes? In other words, when restoration fails, is it because the restored habitat is substandard, because of strong competition with invasive species, or alternatively due to changing environmental conditions that would equally impact established populations? Here, we re-purpose tools developed from modern coexistence theory to address these questions, and apply them to an effort to restore the endangered Contra Costa goldfields (Lasthenia conjugens) in constructed ("restored") California vernal pools. Using 16 years of data, we construct a population model of L. conjugens, a species of conservation concern due primarily to habitat loss and invasion of exotic grasses. We show that initial, short-term appearances of restoration success from population abundances is misleading, as year-to-year fluctuations cause long-term population growth rates to fall below zero. The failure of constructed pools is driven by lower maximum growth rates compared with reference ("natural") pools, coupled with a stronger negative sensitivity to annual fluctuations in abiotic conditions that yield decreased maximum growth rates. Nonetheless, our modeling shows that fluctuations in competition (mainly with exotic grasses) benefit L. conjugens through periods of competitive release, especially in constructed pools of intermediate pool depth. We therefore show how reductions in invasives and seed addition in pools of particular depths could change the outcome of restoration for L. conjugens. By applying a largely theoretical framework to the urgent goal of ecological restoration, our study provides a blueprint for predicting restoration success, and identifies future actions to reverse species loss.


Assuntos
Asteraceae , Ecossistema , Espécies Introduzidas , Plantas , Poaceae , Estações do Ano
5.
Ecol Lett ; 25(5): 1263-1276, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35106910

RESUMO

Modelling species interactions in diverse communities traditionally requires a prohibitively large number of species-interaction coefficients, especially when considering environmental dependence of parameters. We implemented Bayesian variable selection via sparsity-inducing priors on non-linear species abundance models to determine which species interactions should be retained and which can be represented as an average heterospecific interaction term, reducing the number of model parameters. We evaluated model performance using simulated communities, computing out-of-sample predictive accuracy and parameter recovery across different input sample sizes. We applied our method to a diverse empirical community, allowing us to disentangle the direct role of environmental gradients on species' intrinsic growth rates from indirect effects via competitive interactions. We also identified a few neighbouring species from the diverse community that had non-generic interactions with our focal species. This sparse modelling approach facilitates exploration of species interactions in diverse communities while maintaining a manageable number of parameters.


Assuntos
Teorema de Bayes , Ecologia
6.
Ecology ; 103(4): e3650, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35112356

RESUMO

Synchronous dynamics (fluctuations that occur in unison) are universal phenomena with widespread implications for ecological stability. Synchronous dynamics can amplify the destabilizing effect of environmental variability on ecosystem functions such as productivity, whereas the inverse, compensatory dynamics, can stabilize function. Here we combine simulation and empirical analyses to elucidate mechanisms that underlie patterns of synchronous versus compensatory dynamics. In both simulated and empirical communities, we show that synchronous and compensatory dynamics are not mutually exclusive but instead can vary by timescale. Our simulations identify multiple mechanisms that can generate timescale-specific patterns, including different environmental drivers, diverse life histories, dispersal, and non-stationary dynamics. We find that traditional metrics for quantifying synchronous dynamics are often biased toward long-term drivers and may miss the importance of short-term drivers. Our findings indicate key mechanisms to consider when assessing synchronous versus compensatory dynamics and our approach provides a pathway for disentangling these dynamics in natural systems.


Assuntos
Ecossistema , Dinâmica Populacional
7.
Ecol Lett ; 24(10): 2100-2112, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34240557

RESUMO

The effects of altered nutrient supplies and herbivore density on species diversity vary with spatial scale, because coexistence mechanisms are scale dependent. This scale dependence may alter the shape of the species-area relationship (SAR), which can be described by changes in species richness (S) as a power function of the sample area (A): S = cAz , where c and z are constants. We analysed the effects of experimental manipulations of nutrient supply and herbivore density on species richness across a range of scales (0.01-75 m2 ) at 30 grasslands in 10 countries. We found that nutrient addition reduced the number of species that could co-occur locally, indicated by the SAR intercepts (log c), but did not affect the SAR slopes (z). As a result, proportional species loss due to nutrient enrichment was largely unchanged across sampling scales, whereas total species loss increased over threefold across our range of sampling scales.


Assuntos
Biodiversidade , Pradaria , Ecossistema , Herbivoria , Nutrientes
8.
Ecology ; 102(11): e03486, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34289105

RESUMO

Synchrony is broadly important to population and community dynamics due to its ubiquity and implications for extinction dynamics, system stability, and species diversity. Investigations of synchrony in community ecology have tended to focus on covariance in the abundances of multiple species in a single location. Yet, the importance of regional environmental variation and spatial processes in community dynamics suggests that community properties, such as species richness, could fluctuate synchronously across patches in a metacommunity, in an analog of population spatial synchrony. Here, we test the prevalence of this phenomenon and the conditions under which it may occur using theoretical simulations and empirical data from 20 marine and terrestrial metacommunities. Additionally, given the importance of biodiversity for stability of ecosystem function, we posit that spatial synchrony in species richness is strongly related to stability. Our findings show that metacommunities often exhibit spatial synchrony in species richness. We also found that richness synchrony can be driven by environmental stochasticity and dispersal, two mechanisms of population spatial synchrony. Richness synchrony also depended on community structure, including species evenness and beta diversity. Strikingly, ecosystem stability was more strongly related to richness synchrony than to species richness itself, likely because richness synchrony integrates information about community processes and environmental forcing. Our study highlights a new approach for studying spatiotemporal community dynamics and emphasizes the spatial dimensions of community dynamics and stability.


Assuntos
Biodiversidade , Ecossistema , Ecologia
9.
Trends Ecol Evol ; 36(9): 822-836, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34088543

RESUMO

Under global change, how biological diversity and ecosystem services are maintained in time is a fundamental question. Ecologists have long argued about multiple mechanisms by which local biodiversity might control the temporal stability of ecosystem properties. Accumulating theories and empirical evidence suggest that, together with different population and community parameters, these mechanisms largely operate through differences in functional traits among organisms. We review potential trait-stability mechanisms together with underlying tests and associated metrics. We identify various trait-based components, each accounting for different stability mechanisms, that contribute to buffering, or propagating, the effect of environmental fluctuations on ecosystem functioning. This comprehensive picture, obtained by combining different puzzle pieces of trait-stability effects, will guide future empirical and modeling investigations.


Assuntos
Biodiversidade , Ecossistema , Fenótipo
10.
New Phytol ; 231(6): 2319-2332, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34091913

RESUMO

Demographic studies measure drivers of plant fecundity including seed production and survival, but few address both abiotic and biotic drivers of germination such as variation in climate among sites, population density, maternal plants, seed type and fungal pathogen abundance. We examined germination and microbial communities of seeds of Danthonia californica, which are either chasmogamous (external, wind-pollinated) or cleistogamous (internal, self-fertilized) and Festuca roemeri, which are solely chasmogamous. Seed populations were sourced across environmental gradients. We tested germination and used high-throughput sequencing to characterize seed fungal community structure. For F. roemeri, maternal plants significantly influenced germination as did climate and pathogens; germination increased from wetter, cooler sites. For D. californica, the main drivers of germination were maternal plant, seed type and pathogens; on average, more chasmogamous seeds germinated. Fungal communities depended largely on seed type, with fewer fungi associated with cleistogamous seeds, but the communities also depended on site factors such as vapor pressure deficit, plant density and whether the seeds had germinated. Putative pathogens that were negatively correlated with germination were more abundant for both D. californica and F. roemeri chasmogamous seeds than D. californica cleistogamous seeds. In D. californica, cleistogamous and chasmogamous seeds contain vastly different fungal communities.


Assuntos
Festuca , Micobioma , Demografia , Germinação , Poaceae , Sementes
11.
J Environ Manage ; 288: 112417, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765575

RESUMO

Exotic annual grasses dominate millions of hectares and increase fire frequency in the sagebrush ecosystem of North America. This devastating invasion is so costly and challenging to revegetate with perennial vegetation that restoration efforts need to be prioritized and strategically implemented. Management needs to break the annual grass-fire cycle and prevent invasion of new areas, while research is needed to improve restoration success. Under current land management and climate regimes, extensive areas will remain annual grasslands, because of their expansiveness and the low probability of transition to perennial dominance. We propose referring to these communities as Intermountain West Annual Grasslands, recognizing that they are a stable state and require different management goals and objectives than perennial-dominated systems. We need to learn to live with annual grasslands, reducing their costs and increasing benefits derived from them, at the same time maintaining landscape-level plant diversity that could allow transition to perennial dominance under future scenarios. To accomplish this task, we propose a framework and research to improve our ability to live with exotic annual grasses in the sagebrush biome.


Assuntos
Artemisia , Incêndios , Ecossistema , América do Norte , Poaceae
12.
Proc Natl Acad Sci U S A ; 116(36): 17867-17873, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427510

RESUMO

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.


Assuntos
Biodiversidade , Ecossistema , Plantas , Teorema de Bayes , Mudança Climática , Atividades Humanas , Humanos
13.
Ecol Lett ; 22(10): 1658-1667, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31298471

RESUMO

Environmental variability can structure species coexistence by enhancing niche partitioning. Modern coexistence theory highlights two fluctuation-dependent temporal coexistence mechanisms -the storage effect and relative nonlinearity - but empirical tests are rare. Here, we experimentally test if environmental fluctuations enhance coexistence in a California annual grassland. We manipulate rainfall timing and relative densities of the grass Avena barbata and forb Erodium botrys, parameterise a demographic model, and partition coexistence mechanisms. Rainfall variability was integral to grass-forb coexistence. Variability enhanced growth rates of both species, and early-season drought was essential for Erodium persistence. While theoretical developments have focused on the storage effect, it was not critical for coexistence. In comparison, relative nonlinearity strongly stabilised coexistence, where Erodium experienced disproportionately high growth under early-season drought due to competitive release from Avena. Our results underscore the importance of environmental variability and suggest that relative nonlinearity is a critical if underappreciated coexistence mechanism.


Assuntos
Pradaria , Poaceae/classificação , Poaceae/crescimento & desenvolvimento , Chuva , California , Secas
14.
Nat Commun ; 9(1): 5047, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30487548

RESUMO

Understanding why some species are common and others are rare is a central question in ecology, and is critical for developing conservation strategies under global change. Rare species are typically considered to be more prone to extinction-but the fact they are rare can impede a general understanding of rarity vs. abundance. Here we develop and empirically test a framework to predict species abundances and stability using mechanisms governing population dynamics. Our results demonstrate that coexisting species with similar abundances can be shaped by different mechanisms (specifically, higher growth rates when rare vs. weaker negative density-dependence). Further, these dynamics influence population stability: species with higher intrinsic growth rates but stronger negative density-dependence were more stable and less sensitive to climate variability, regardless of abundance. This suggests that underlying mechanisms governing population dynamics, in addition to population size, may be critical indicators of population stability in an increasingly variable world.


Assuntos
Dinâmica Populacional , Animais , Mudança Climática , Ecologia , Densidade Demográfica
15.
Ecology ; 99(4): 858-865, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29352480

RESUMO

Heterogeneity is increasingly recognized as a foundational characteristic of ecological systems. Under global change, understanding temporal community heterogeneity is necessary for predicting the stability of ecosystem functions and services. Indeed, spatial heterogeneity is commonly used in alternative stable state theory as a predictor of temporal heterogeneity and therefore an early indicator of regime shifts. To evaluate whether spatial heterogeneity in species composition is predictive of temporal heterogeneity in ecological communities, we analyzed 68 community data sets spanning freshwater and terrestrial systems where measures of species abundance were replicated over space and time. Of the 68 data sets, 55 (81%) had a weak to strongly positive relationship between spatial and temporal heterogeneity, while in the remaining communities the relationship was weak to strongly negative (19%). Based on a mixed model analysis, we found a significant but weak overall positive relationship between spatial and temporal heterogeneity across all data sets combined, and within aquatic and terrestrial data sets separately. In addition, lifespan and successional stage were negatively and positively related to temporal heterogeneity, respectively. We conclude that spatial heterogeneity may be a predictor of temporal heterogeneity in ecological communities, and that this relationship may be a general property of many terrestrial and aquatic communities.


Assuntos
Ecossistema , Água Doce , Biota
16.
Ecol Lett ; 20(12): 1534-1545, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29067791

RESUMO

Temporal stability of ecosystem functioning increases the predictability and reliability of ecosystem services, and understanding the drivers of stability across spatial scales is important for land management and policy decisions. We used species-level abundance data from 62 plant communities across five continents to assess mechanisms of temporal stability across spatial scales. We assessed how asynchrony (i.e. different units responding dissimilarly through time) of species and local communities stabilised metacommunity ecosystem function. Asynchrony of species increased stability of local communities, and asynchrony among local communities enhanced metacommunity stability by a wide range of magnitudes (1-315%); this range was positively correlated with the size of the metacommunity. Additionally, asynchronous responses among local communities were linked with species' populations fluctuating asynchronously across space, perhaps stemming from physical and/or competitive differences among local communities. Accordingly, we suggest spatial heterogeneity should be a major focus for maintaining the stability of ecosystem services at larger spatial scales.


Assuntos
Biodiversidade , Ecossistema , Plantas , Reprodutibilidade dos Testes
17.
Oecologia ; 183(3): 831-840, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28097426

RESUMO

Understanding the factors governing ecological stability in variable environments is a central focus of ecology. Functional diversity can stabilize ecosystem function over time if one group of species compensates for an environmentally driven decline in another. Although intuitively appealing, evidence for this pattern is mixed. We hypothesized that diverse functional responses to rainfall will increase the stability of vegetation cover and biomass across rainfall conditions, but that this effect depends on land-use legacies that maintain functional diversity. We experimentally manipulated grazing in a California grassland to create land-use legacies of low and moderate grazing, across which we implemented rainout shelters and irrigation to create dry and wet conditions over 3 years. We found that the stability of the vegetation cover was greatly elevated and the stability of the biomass was slightly elevated across rainfall conditions in areas with histories of moderate grazing. Initial functional diversity-both in the seed bank and aboveground-was also greater in areas that had been moderately grazed. Rainfall conditions in conjunction with this grazing legacy led to different functional diversity patterns over time. Wet conditions led to rapid declines in functional diversity and a convergence on resource-acquisitive traits. In contrast, consecutively dry conditions maintained but did not increase functional diversity over time. As a result, grazing practices and environmental conditions that decrease functional diversity may be associated with lasting effects on the response of ecosystem functions to drought. Our results demonstrate that theorized relationships between diversity and stability are applicable and important in the context of working grazed landscapes.


Assuntos
Ecossistema , Pradaria , Biomassa , Secas , Ecologia
18.
PLoS One ; 9(9): e75396, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25222028

RESUMO

The concept of ecosystem services--the benefits that nature provides to human's society--has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700's. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.


Assuntos
Ecossistema , Pradaria , California , Conservação dos Recursos Naturais
19.
Ecology ; 95(6): 1693-700, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25039233

RESUMO

Understanding how biotic mechanisms confer stability in variable environments is a fundamental quest in ecology, and one that is becoming increasingly urgent with global change. Several mechanisms, notably a portfolio effect associated with species richness, compensatory dynamics generated by negative species covariance and selection for stable dominant species populations can increase the stability of the overall community. While the importance of these mechanisms is debated, few studies have contrasted their importance in an environmental context. We analyzed nine long-term data sets of grassland species composition to investigate how two key environmental factors, precipitation amount and variability, may directly influence community stability and how they may indirectly influence stability via biotic mechanisms. We found that the importance of stability mechanisms varied along the environmental gradient: strong negative species covariance occurred in sites characterized by high precipitation variability, whereas portfolio effects increased in sites with high mean annual precipitation. Instead of questioning whether compensatory dynamics are important in nature, our findings suggest that debate should widen to include several stability mechanisms and how these mechanisms vary in importance across environmental gradients.


Assuntos
Ecossistema , Modelos Biológicos , Plantas/classificação , Chuva , Demografia , Monitoramento Ambiental
20.
Ecology ; 94(8): 1687-96, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24015513

RESUMO

Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences temporal variation in plant community structure. Here, we evaluated how species richness, turnover, and composition of grassland plant communities responded to interannual variation in precipitation by synthesizing long-term data from grasslands across the United States. We found that mean annual precipitation,(MAP) was a positive predictor of species richness across sites, but a positive temporal relationship between annual precipitation and richness was only evident within two sites with low MAP. We also found higher average rates of species turnover in dry sites that in turn had a high proportion of annual species, although interannual rates of species turnover were surprisingly high across all locations. Annual species were less abundant than perennial species at nearly all sites, and our analysis showed that the probability of a species being lost or gained from one year to the next increased with decreasing species abundance. Bray-Curtis dissimilarity from one year to the next, a measure of species composition change that is influenced mainly by abundant species, was insensitive to precipitation at all sites. These results suggest that the richness and turnover patterns we observed were driven primarily by rare species, which comprise the majority of the local species pools at these grassland sites. These findings are consistent with the idea that short-lived and less abundant species are more sensitive to interannual climate variability than longer-lived and more abundant species. We conclude that, among grassland ecosystems, xeric grasslands are likely to exhibit the greatest responsiveness of community composition (richness and turnover) to predicted future increases in interannual precipitation variability. Over the long-term, species composition may shift to reflect spatial patterns of mean precipitation; however, perennial-dominated systems will be buffered against rising interannual variation, while systems that have a large number of rare, annual species will show the greatest temporal variability in species composition in response to rising interannual variability in precipitation.


Assuntos
Plantas/classificação , Chuva , Biodiversidade , Monitoramento Ambiental , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...