Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(6): 1139-1146, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37293781

RESUMO

The intrinsic properties of RNA and DNA biopolymers emphasized by engineered nucleic acid nanoparticles (NANPs) offer accelerated development of next-generation therapies. The rational design of NANPs facilitates programmable architectures intended for regulated molecular and cellular interactions. The conventional bottom-up assembly of NANPs relies on the thermal annealing of individual strands. Here, we introduce a concept of nuclease-driven production of NANPs where selective digestion of functionally inert structures leads to isothermal self-assembly of liberated constituents. The working principles, morphological changes, assembly kinetics, and the retention of structural integrity for system components subjected to anhydrous processing and storage are assessed. We show that the assembly of precursors into a single structure improves stoichiometry and enhances the functionality of nuclease-driven products. Furthermore, the experiments with immune reporting cell lines show that the developed protocols retain the immunostimulatory functionality of tested NANPs. The presented approach enables exploitation of the advantages of conditionally produced NANPs and demonstrates that NANPs' stability, immunorecognition, and assembly can be regulated to allow for a more robust functional system.


Assuntos
Nanopartículas , Ácidos Nucleicos , Ácidos Nucleicos/química , RNA/química , DNA/química , Linhagem Celular , Nanopartículas/química , Conformação de Ácido Nucleico
2.
Bioengineering (Basel) ; 10(6)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37370610

RESUMO

Glaucoma, where increased intraocular pressure (IOP) leads to damage to the optic nerve and loss of sight, is amongst the foremost causes of irreversible blindness worldwide. In primary open angle glaucoma, the increased IOP is a result of the malfunctioning human trabecular meshwork (HTM) cells' inability to properly regulate the outflow of aqueous humor from the eye. A potential future treatment for glaucoma is to replace damaged HTM cells with a tissue-engineered substitute, thus restoring proper fluid outflow. Polycaprolactone (PCL) is a versatile, biodegradable, and implantable material that is widely used for cell culture and tissue engineering. In this work, PCL scaffolds were lithographically fabricated using a sacrificial process to produce submicron-thick scaffolds with openings of specific sizes and shapes (e.g., grid, hexagonal pattern). The HTM cell growth on gelatin-coated PCL scaffolds was assessed by scanning electron microscopy, tetrazolium metabolic activity assay, and cytoskeletal organization of F-actin. Expression of HTM-specific markers and ECM deposition were assessed by immunocytochemistry and qPCR analysis. Gelatin-coated, micropatterned, ultrathin, porous PCL scaffolds with a grid pattern supported proper HTM cell growth, cytoskeleton organization, HTM-marker expression, and ECM deposition, demonstrating the feasibility of using these PCL scaffolds to tissue-engineer implantable, healthy ocular outflow tissue.

3.
Small ; 18(46): e2204941, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216772

RESUMO

Nucleic acid nanoparticles, or NANPs, rationally designed to communicate with the human immune system, can offer innovative therapeutic strategies to overcome the limitations of traditional nucleic acid therapies. Each set of NANPs is unique in their architectural parameters and physicochemical properties, which together with the type of delivery vehicles determine the kind and the magnitude of their immune response. Currently, there are no predictive tools that would reliably guide the design of NANPs to the desired immunological outcome, a step crucial for the success of personalized therapies. Through a systematic approach investigating physicochemical and immunological profiles of a comprehensive panel of various NANPs, the research team developes and experimentally validates a computational model based on the transformer architecture able to predict the immune activities of NANPs. It is anticipated that the freely accessible computational tool that is called an "artificial immune cell," or AI-cell, will aid in addressing the current critical public health challenges related to safety criteria of nucleic acid therapies in a timely manner and promote the development of novel biomedical tools.


Assuntos
Nanopartículas , Ácidos Nucleicos , Humanos , Ácidos Nucleicos/química , Monócitos , Nanopartículas/química , Interferons , Inteligência Artificial
4.
Nanoscale ; 14(18): 6866-6875, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35441627

RESUMO

RNA fibers are a class of biomaterials that can be assembled using HIV-like kissing loop interactions. Because of the programmability of molecular design and low immunorecognition, these structures present an interesting opportunity to solve problems in nanobiotechnology and synthetic biology. However, the experimental tools to fully characterize and discriminate among different fiber structures in solution are limited. Herein, we utilize solid-state nanopore experiments and Brownian dynamics simulations to characterize and distinguish several RNA fiber structures that differ in their degrees of branching. We found that, regardless of the electrolyte type and concentration, fiber structures that have more branches produce longer and deeper ionic current blockades in comparison to the unbranched fibers. Experiments carried out at temperatures ranging from 20-60 °C revealed almost identical distributions of current blockade amplitudes, suggesting that the kissing loop interactions in fibers are resistant to heating within this range.


Assuntos
Nanoporos , DNA/química , Transporte de Íons , Simulação de Dinâmica Molecular , RNA
5.
Small ; 18(13): e2104814, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128787

RESUMO

Recent advances in nanotechnology now allow for the methodical implementation of therapeutic nucleic acids (TNAs) into modular nucleic acid nanoparticles (NANPs) with tunable physicochemical properties which can match the desired biological effects, provide uniformity, and regulate the delivery of multiple TNAs for combinatorial therapy. Despite the potential of novel NANPs, the maintenance of their structural integrity during storage and shipping remains a vital issue that impedes their broader applications. Cold chain storage is required to maintain the potency of NANPs in the liquid phase, which greatly increases transportation costs. To promote long-term storage and retention of biological activities at higher temperatures (e.g., +50 °C), a panel of representative NANPs is first exposed to three different drying mechanisms-vacuum concentration (SpeedVac), lyophilization (Lyo), and light-assisted drying (LAD)-and then rehydrated and analyzed. While SpeedVac primarily operates using heat, Lyo avoids temperature increases by taking advantage of pressure reduction and LAD involves a near-infrared laser for uniform drying in the presence of trehalose. This work compares and defines refinements crucial in formulating an optimal strategy for producing stable, fully functional NANPs and presents a forward advancement in their development for clinical applications.


Assuntos
Nanopartículas , Ácidos Nucleicos , Nanopartículas/química , Nanotecnologia , Ácidos Nucleicos/química , Temperatura
6.
Nanomedicine ; 36: 102418, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34171470

RESUMO

Radiation induces the generation of platelet-activating factor receptor (PAF-R) ligands, including PAF and oxidized phospholipids. Alternatively, PAF is also synthesized by the biosynthetic enzymes lysophosphatidylcholine acyltransferases (LPCATs) which are expressed by tumor cells including melanoma. The activation of PAF-R by PAF and oxidized lipids triggers a survival response protecting tumor cells from radiation-induced cell death, suggesting the involvement of the PAF/PAF-R axis in radioresistance. Here, we investigated the role of LPCATs in the melanoma cell radiotherapy response. LPCAT is a family of four enzymes, LPCAT1-4, and modular nucleic acid nanoparticles (NANPs) allowed for the simultaneous silencing of all four LPCATs. We found that the in vitro simultaneous silencing of all four LPCAT transcripts by NANPs enhanced the therapeutic effects of radiation in melanoma cells by increasing cell death, reducing long-term cell survival, and activating apoptosis. Thus, we propose that NANPs are an effective strategy for improving radiotherapy efficacy in melanomas.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Inativação Gênica , Melanoma , Nanopartículas , Proteínas de Neoplasias , Ácidos Nucleicos , 1-Acilglicerofosfocolina O-Aciltransferase/antagonistas & inibidores , 1-Acilglicerofosfocolina O-Aciltransferase/biossíntese , Linhagem Celular Tumoral , Humanos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/biossíntese , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacologia
7.
Nucleic Acids Res ; 48(20): 11785-11798, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33091133

RESUMO

Nucleic acid nanoparticles (NANPs) have become powerful new platforms as therapeutic and diagnostic tools due to the innate biological ability of nucleic acids to identify target molecules or silence genes involved in disease pathways. However, the clinical application of NANPs has been limited by factors such as chemical instability, inefficient intracellular delivery, and the triggering of detrimental inflammatory responses following innate immune recognition of nucleic acids. Here, we have studied the effects of altering the chemical composition of a circumscribed panel of NANPs that share the same connectivity, shape, size, charge and sequences. We show that replacing RNA strands with either DNA or chemical analogs increases the enzymatic and thermodynamic stability of NANPs. Furthermore, we have found that such composition changes affect delivery efficiency and determine subcellular localization, effects that could permit the targeted delivery of NANP-based therapeutics and diagnostics. Importantly, we have determined that altering NANP composition can dictate the degree and mechanisms by which cell immune responses are initiated. While RNA NANPs trigger both TLR7 and RIG-I mediated cytokine and interferon production, DNA NANPs stimulate minimal immune activation. Importantly, incorporation of 2'F modifications abrogates RNA NANP activation of TLR7 but permits RIG-I dependent immune responses. Furthermore, 2'F modifications of DNA NANPs significantly enhances RIG-I mediated production of both proinflammatory cytokines and interferons. Collectively this indicates that off-target effects may be reduced and/or desirable immune responses evoked based upon NANPs modifications. Together, our studies show that NANP composition provides a simple way of controlling the immunostimulatory potential, and physicochemical and delivery characteristics, of such platforms.


Assuntos
DNA/química , Nanopartículas/química , RNA/química , Transporte Biológico , Linhagem Celular , Citocinas/biossíntese , DNA/metabolismo , Humanos , Fatores Reguladores de Interferon/metabolismo , NF-kappa B/metabolismo , Nanopartículas/metabolismo , Oligonucleotídeos/química , RNA/metabolismo , Termodinâmica
8.
ACS Appl Mater Interfaces ; 12(35): 38873-38886, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805923

RESUMO

Programmable nucleic acid nanoparticles (NANPs) with precisely controlled functional compositions can regulate the conditional activation of various biological pathways and responses in human cells. However, the intracellular delivery of NANPs alone is hindered by their susceptibility to nuclease activity and inefficient crossing of biological membranes. In this work, we optimized the internalization and therapeutic performance of several representative NANPs delivered with mesoporous silica nanoparticles (MSNPs) tailored for efficient electrostatic association with NANPs. We compared the immunostimulatory properties of different NA-MS-NP complexes formed with globular, planar, and fibrous NANPs and demonstrated the maximum immunostimulation for globular NANPs. As a proof of concept, we assessed the specific gene silencing by NA-MS-NP complexes functionalized with siRNA targeting green fluorescent protein expressed in triple-negative human breast cancer cells. We showed that the fibrous NANPs have the highest silencing efficiency when compared to globular or planar counterparts. Finally, we confirmed the multimodal ability of MSNPs to co-deliver a chemotherapy drug, doxorubicin, and NANPs targeting apoptosis regulator gene BCL2 in triple-negative breast cancer and melanoma cell lines. Overall, the combination of NANPs and MSNPs may become a new promising approach to efficiently treat cancer and other diseases via the simultaneous targeting of various pathways.


Assuntos
Portadores de Fármacos/química , Nanopartículas/química , Ácidos Nucleicos/química , Dióxido de Silício/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Humanos , Porosidade , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo
9.
J Neuroinflammation ; 17(1): 139, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357908

RESUMO

BACKGROUND: Bacterial meningitis and meningoencephalitis are associated with devastating neuroinflammation. We and others have demonstrated the importance of glial cells in the initiation of immune responses to pathogens invading the central nervous system (CNS). These cells use a variety of pattern recognition receptors (PRRs) to identify common pathogen motifs and the cytosolic sensor retinoic acid inducible gene-1 (RIG-I) is known to serve as a viral PRR and initiator of interferon (IFN) responses. Intriguingly, recent evidence indicates that RIG-I also has an important role in the detection of bacterial nucleic acids, but such a role has not been investigated in glia. METHODS: In this study, we have assessed whether primary or immortalized human and murine glia express RIG-I either constitutively or following stimulation with bacteria or their products by immunoblot analysis. We have used capture ELISAs and immunoblot analysis to assess human microglial interferon regulatory factor 3 (IRF3) activation and IFN production elicited by bacterial nucleic acids and novel engineered nucleic acid nanoparticles. Furthermore, we have utilized a pharmacological inhibitor of RIG-I signaling and siRNA-mediated knockdown approaches to assess the relative importance of RIG-I in such responses. RESULTS: We demonstrate that RIG-I is constitutively expressed by human and murine microglia and astrocytes, and is elevated following bacterial infection in a pathogen and cell type-specific manner. Additionally, surface and cytosolic PRR ligands are also sufficient to enhance RIG-I expression. Importantly, our data demonstrate that bacterial RNA and DNA both trigger RIG-I-dependent IRF3 phosphorylation and subsequent type I IFN production in human microglia. This ability has been confirmed using our nucleic acid nanoparticles where we demonstrate that both RNA- and DNA-based nanoparticles can stimulate RIG-I-dependent IFN responses in these cells. CONCLUSIONS: The constitutive and bacteria-induced expression of RIG-I by human glia and its ability to mediate IFN responses to bacterial RNA and DNA and nucleic acid nanoparticles raises the intriguing possibility that RIG-I may be a potential target for therapeutic intervention during bacterial infections of the CNS, and that the use of engineered nucleic acid nanoparticles that engage this sensor might be a method to achieve this goal.


Assuntos
DNA Bacteriano/imunologia , Microglia/imunologia , RNA Bacteriano/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Receptores do Ácido Retinoico/imunologia , Animais , Células Cultivadas , Humanos , Fator Regulador 3 de Interferon/biossíntese , Interferons/biossíntese , Camundongos , Camundongos Endogâmicos C57BL
10.
Nanomedicine ; 23: 102094, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669854

RESUMO

Programmable nucleic acid nanoparticles (NANPs) provide controlled coordination of therapeutic nucleic acids (TNAs) and other biological functionalities. Beyond multivalence, recent reports demonstrate that NANP technology can also elicit a specific immune response, adding another layer of customizability to this innovative approach. While the delivery of nucleic acids remains a challenge, new carriers are introduced and tested continuously. Polymeric platforms have proven to be efficient in shielding nucleic acid cargos from nuclease degradation while promoting their delivery and intracellular release. Here, we venture beyond the delivery of conventional TNAs and combine the stable cationic poly-(lactide-co-glycolide)-graft-polyethylenimine with functionalized NANPs. Furthermore, we compare several representative NANPs to assess how their overall structures influence their delivery with the same carrier. An extensive study of various formulations both in vitro and in vivo reveals differences in their immunostimulatory activity, gene silencing efficiency, and biodistribution, with fibrous NANPs advancing for TNA delivery.


Assuntos
Adjuvantes Imunológicos , Inativação Gênica , Nanopartículas/química , Ácidos Nucleicos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacocinética , Adjuvantes Imunológicos/farmacologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Humanos , Ácidos Nucleicos/química , Ácidos Nucleicos/farmacocinética , Ácidos Nucleicos/farmacologia
12.
Nanomaterials (Basel) ; 9(7)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31261977

RESUMO

The use of nucleic acids (RNA and DNA) offers a unique and multifunctional platform for numerous applications including therapeutics, diagnostics, nanodevices, and materials [...].

13.
Molecules ; 24(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897721

RESUMO

Infusion reactions (IRs) create a translational hurdle for many novel therapeutics, including those utilizing nanotechnology. Nucleic acid nanoparticles (NANPs) are a novel class of therapeutics prepared by rational design of relatively short oligonucleotides to self-assemble into various programmable geometric shapes. While cytokine storm, a common type of IR, has halted clinical development of several therapeutic oligonucleotides, NANP technologies hold tremendous potential to bring these reactions under control by tuning the particle's physicochemical properties to the desired type and magnitude of the immune response. Recently, we reported the very first comprehensive study of the structure⁻activity relationship between NANPs' shape, size, composition, and their immunorecognition in human cells, and identified the phagolysosomal pathway as the major route for the NANPs' uptake and subsequent immunostimulation. Here, we explore the molecular mechanism of NANPs' recognition by primary immune cells, and particularly the contributing role of the Toll-like receptors. Our current study expands the understanding of the immune recognition of engineered nucleic acid-based therapeutics and contributes to the improvement of the nanomedicine safety profile.


Assuntos
Leucócitos Mononucleares/metabolismo , Nanopartículas/química , Ácidos Nucleicos/química , Células Cultivadas , Eletroporação , Humanos , Nanotecnologia/métodos , Receptor 7 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo
14.
Molecules ; 23(12)2018 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30513826

RESUMO

RNA aptamers selected to bind fluorophores and activate their fluorescence offer a simple and modular way to visualize native RNAs in cells. Split aptamers which are inactive until the halves are brought within close proximity can become useful for visualizing the dynamic actions of RNA assemblies and their interactions in real time with low background noise and eliminated necessity for covalently attached dyes. Here, we design and test several sets of F30 Broccoli aptamer splits, that we call fluorets, to compare their relative fluorescence and physicochemical stabilities. We show that the splits can be simply assembled either through one-pot thermal annealing or co-transcriptionally, thus allowing for direct tracking of transcription reactions via the fluorescent response. We suggest a set of rules that enable for the construction of responsive biomaterials that readily change their fluorescent behavior when various stimuli such as the presence of divalent ions, exposure to various nucleases, or changes in temperature are applied. We also show that the strand displacement approach can be used to program the controllable fluorescent responses in isothermal conditions. Overall, this work lays a foundation for the future development of dynamic systems for molecular computing which can be used to monitor real-time processes in cells and construct biocompatible logic gates.


Assuntos
Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes/química , Nanotecnologia/métodos , RNA/genética , Desenho Assistido por Computador , Desoxirribonucleases/metabolismo
15.
Nanoscale ; 10(37): 17761-17770, 2018 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-30215080

RESUMO

RNA is now widely acknowledged not only as a multifunctional biopolymer but also as a dynamic material for constructing nanostructures with various biological functions. Programmable RNA nanoparticles (NPs) allow precise control over their formulation and activation of multiple functionalities, with the potential to self-assemble in biological systems. These attributes make them attractive for drug delivery and therapeutic applications. In the present study, we demonstrate the ability of iron oxide magnetic nanoparticles (MNPs) to deliver different types of RNA NPs functionalized with dicer substrate RNAs inside human cells. Our results show that use of functionalized RNA NPs result in statistically higher transfection efficiency compared to the use of RNA duplexes. Furthermore, we show that the nucleic acids in the MNP/RNA NP complexes are protected from nuclease degradation and that they can achieve knockdown of target protein expression, which is amplified by magnetic stimulus. The current work represents the very first report indicating that iron oxide nanoparticles may efficiently protect and deliver programmable RNA NPs to human cells.


Assuntos
Sistemas de Liberação de Medicamentos , Nanopartículas de Magnetita , RNA/química , Linhagem Celular Tumoral , Compostos Férricos , Humanos , Magnetismo , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Polietilenoimina , Transfecção
16.
Nano Lett ; 18(7): 4309-4321, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29894623

RESUMO

Nucleic acid nanoparticles (NANPs) have evolved as a new class of therapeutics with the potential to detect and treat diseases. Despite tremendous advancements in NANP development, their immunotoxicity, one of the major impediments in clinical translation of traditional therapeutic nucleic acids (TNAs), has never been fully characterized. Here, we describe the first systematically studied immunological recognition of 25 representative RNA and DNA NANPs selected to have different design principles and physicochemical properties. We discover that, unlike traditional TNAs, NANPs used without a delivery carrier are immunoquiescent. We show that interferons (IFNs) are the key cytokines triggered by NANPs after their internalization by phagocytic cells, which agrees with predictions based on the experiences with TNAs. However, in addition to type I IFNs, type III IFNs also serve as reliable biomarkers of NANPs, which is usually not characteristic of TNAs. We show that overall immunostimulation relies on NANP shapes, connectivities, and compositions. We demonstrate that, like with traditional TNAs, plasmacytoid dendritic cells serve as the primary interferon producers among all peripheral blood mononuclear cells treated with NANPs, and scavenger receptor-mediated uptake and endosomal Toll-like receptor signaling are essential for NANP immunorecognition. The TLR involvement, however, is different from that expected for traditional TNA recognition. Based on these results, we suggest that NANP technology may serve as a prototype of auxiliary molecular language for communication with the immune system and the modulation of immune responses.


Assuntos
Imunidade Inata/efeitos dos fármacos , Interferons/antagonistas & inibidores , Nanopartículas/uso terapêutico , Ácidos Nucleicos/uso terapêutico , DNA/efeitos adversos , DNA/imunologia , DNA/uso terapêutico , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Interferons/genética , Interferons/imunologia , Nanopartículas/efeitos adversos , Nanopartículas/ultraestrutura , Ácidos Nucleicos/efeitos adversos , Ácidos Nucleicos/imunologia , Ácidos Nucleicos/ultraestrutura , RNA/efeitos adversos , RNA/imunologia , RNA/uso terapêutico
17.
Adv Funct Mater ; 28(48)2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31258458

RESUMO

RNA is a versatile biomaterial that can be used to engineer nanoassemblies for personalized treatment of various diseases. Despite promising advancements, the design of RNA nanoassemblies with minimal recognition by the immune system remains a major challenge. Here, an approach is reported to engineer RNA fibrous structures to operate as a customizable platform for efficient coordination of siRNAs and for maintaining low immunostimulation. Functional RNA fibers are studied in silico and their formation is confirmed by various experimental techniques and visualized by atomic force microscopy (AFM). It is demonstrated that the RNA fibers offer multiple advantages among which are: i) programmability and modular design that allow for simultaneous controlled delivery of multiple siRNAs and fluorophores, ii) reduced immunostimulation when compared to other programmable RNA nanoassemblies, and iii) simple production protocol for endotoxin-free fibers with the option of their cotranscriptional assembly. Furthermore, it is shown that functional RNA fibers can be efficiently delivered with various organic and inorganic carriers while retaining their structural integrity in cells. Specific gene silencing triggered by RNA fibers is assessed in human breast cancer and melanoma cell lines, with the confirmed ability of functional fibers to selectively target single nucleotide mutations.

18.
Nano Lett ; 17(11): 7067-7074, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28975798

RESUMO

When light is used to excite electronic transitions in a material, nonradiative energy during relaxation is often released in the form of heat. In this work, we show that photoexcitation of a silicon nitride nanopore using a focused visible laser results in efficient localized photothermal heating, which reduces the nearby electrolyte viscosity and increases the ionic conductance. In addition, a strong localized thermal gradient in the pore vicinity is produced, evidenced by finite-element simulations and experimental observation of both ion and DNA thermophoresis. After correcting for thermophoresis, the nanopore current can be used as a nanoscale thermometer, enabling rapid force thermoscopy. We utilize this to probe thermal melting transitions in synthetic and native biomolecules that are heated at the nanopore. Our results on single molecules are validated by correspondence to bulk measurements, which paves the way to various biophysical experiments that require rapid temperature and force control on individual molecules.

19.
Small ; 13(42)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28922553

RESUMO

In the past few years, the study of therapeutic RNA nanotechnology has expanded tremendously to encompass a large group of interdisciplinary sciences. It is now evident that rationally designed programmable RNA nanostructures offer unique advantages in addressing contemporary therapeutic challenges such as distinguishing target cell types and ameliorating disease. However, to maximize the therapeutic benefit of these nanostructures, it is essential to understand the immunostimulatory aptitude of such tools and identify potential complications. This paper presents a set of 16 nanoparticle platforms that are highly configurable. These novel nucleic acid based polygonal platforms are programmed for controllable self-assembly from RNA and/or DNA strands via canonical Watson-Crick interactions. It is demonstrated that the immunostimulatory properties of these particular designs can be tuned to elicit the desired immune response or lack thereof. To advance the current understanding of the nanoparticle properties that contribute to the observed immunomodulatory activity and establish corresponding designing principles, quantitative structure-activity relationship modeling is conducted. The results demonstrate that molecular weight, together with melting temperature and half-life, strongly predicts the observed immunomodulatory activity. This framework provides the fundamental guidelines necessary for the development of a new library of nanoparticles with predictable immunomodulatory activity.


Assuntos
Imunomodulação , Microglia/citologia , Ácidos Nucleicos/química , Relação Quantitativa Estrutura-Atividade , Linhagem Celular Tumoral , DNA/química , Humanos , RNA/química , Reprodutibilidade dos Testes
20.
ACS Nano ; 11(10): 9701-9710, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28841287

RESUMO

Nucleic acid nanoparticles (NANPs) are an emerging class of programmable structures with tunable shape and function. Their promise as tools for fundamental biophysics studies, molecular sensing, and therapeutic applications necessitates methods for their detection and characterization at the single-particle level. In this work, we study electrophoretic transport of individual ring-shaped and cube-shaped NANPs through solid-state nanopores. In the optimal nanopore size range, the particles must deform to pass through, which considerably increases their residence time within the pore. Such anomalously long residence times permit detection of picomolar amounts of NANPs when nanopore measurements are carried out at a high transmembrane bias. In the case of a NANP mixture, the type of individual particle passing through nanopores can be efficiently determined from analysis of a single electrical pulse. Molecular dynamics simulations provide insight into the mechanical barrier to transport of the NANPs and corroborate the difference in the signal amplitudes observed for the two types of particles. Our study serves as a basis for label-free analysis of soft programmable-shape nanoparticles.


Assuntos
DNA/química , Nanopartículas/química , Nanoporos , RNA/química , Simulação de Dinâmica Molecular , Tamanho da Partícula , RNA/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...