Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 109(4): 513-523, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38291801

RESUMO

Tamoxifen (TAM) is required for gene recombination in the inducible Cre/lox system. The TAM-enriched diet is considered safe, with negligible impact on animal wellbeing. However, studies reporting the long-term effects of the TAM diet and its potential impact on experimental outcomes are scarce. We conducted a longitudinal study on mice exposed to a 4-week dietary TAM citrate supplementation. Several parameters were recorded, such as body weight, body composition, mortality, and cardiac function. The collagen1a2 (Col1a2) transgenic mouse was used to assess TAM-induced recombination in vivo in cardiac fibroblasts followed by myocardial infarction (MI). The impact of TAM on the MI outcome was also evaluated. The recombination efficiency and cytotoxic effect of the TAM active metabolite, 4-hydroxy-tamoxifen (4-OHT), were assessed in vitro. Mice exposed to a TAM diet showed body weight loss and a 10% increase in mortality (P = 0.045). The TAM diet decreased cardiac function and induced cardiac remodeling, indicated by decreased fractional shortening from 32.23% to 19.23% (P = 0.001) and left ventricular (LV) wall thinning. All measured parameters were reversed to normal when mice were returned to a normal diet. Infarcted Col1a2-CreER mice on the TAM regimen showed gene recombination in fibroblasts, but it was associated with a substantial increase in mortality post-surgery (2.5-fold) compared to the controls. In vitro, 4-OHT induced gene editing in fibroblasts; however, cell growth arrest and cytotoxicity were observed at high concentrations. In conclusion, prolonged exposure to the TAM diet can be detrimental and necessitates careful model selection and interpretation of the results.


Assuntos
Cardiomiopatias , Fragilidade , Tamoxifeno/análogos & derivados , Camundongos , Animais , Estudos Longitudinais , Tamoxifeno/farmacologia , Camundongos Transgênicos , Dieta
2.
Cells ; 10(10)2021 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-34685680

RESUMO

Stromal interaction molecule 1 (STIM1) resides primarily in the sarco/endoplasmic reticulum, where it senses intraluminal Ca2+ levels and activates Orai channels on the plasma membrane to initiate Ca2+ influx. We have previously shown that STIM1 is involved in the dynamic remodeling of the actin cytoskeleton. However, the downstream effectors of STIM1 that lead to cytoskeletal remodeling are not known. The proximity-labeling technique (BioID) can capture weak and transient protein-protein interactions, including proteins that reside in the close vicinity of the bait, but that may not be direct binders. Hence, in the present study, we investigated the STIM1 interactome using the BioID technique. A promiscuous biotin ligase was fused to the cytoplasmic C-terminus of STIM1 and was stably expressed in a mouse embryonic fibroblast (MEF) cell line. Screening of biotinylated proteins identified several high confidence targets. Here, we report Gelsolin (GSN) as a new member of the STIM1 interactome. GSN is a Ca2+-dependent actin-severing protein that promotes actin filament assembly and disassembly. Results were validated using knockdown approaches and immunostaining. We tested our results in neonatal cardiomyocytes where STIM1 overexpression induced altered actin dynamics and cytoskeletal instability. This is the first time that BioID assay was used to investigate the STIM1 interactome. Our work highlights the role of STIM1/GSN in the structure and function of the cytoskeleton.


Assuntos
Citoesqueleto/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Molécula 1 de Interação Estromal/metabolismo , Animais , Animais Recém-Nascidos , Linhagem Celular , Tamanho Celular , Gelsolina/metabolismo , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miofibrilas/metabolismo , Ligação Proteica , Proteoma/metabolismo , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...