Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 17(9): 1766-1777, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29945935

RESUMO

We have used SWATH mass spectrometry to quantify 3648 proteins across 76 proteomes collected from genetically diverse BXD mouse strains in two fractions (mitochondria and total cell) from five tissues: liver, quadriceps, heart, brain, and brown adipose (BAT). Across tissues, expression covariation between genes' proteins and transcripts-measured in the same individuals-broadly aligned. Covariation was however far stronger in certain subsets than others: only 8% of transcripts in the lowest expression and variance quintile covaried with their protein, in contrast to 65% of transcripts in the highest quintiles. Key functional differences among the 3648 genes were also observed across tissues, with electron transport chain (ETC) genes particularly investigated. ETC complex proteins covary and form strong gene networks according to tissue, but their equivalent transcripts do not. Certain physiological consequences, such as the depletion of ATP synthase in BAT, are thus obscured in transcript data. Lastly, we compared the quantitative proteomic measurements between the total cell and mitochondrial fractions for the five tissues. The resulting enrichment score highlighted several hundred proteins which were strongly enriched in mitochondria, which included several dozen proteins were not reported in literature to be mitochondrially localized. Four of these candidates were selected for biochemical validation, where we found MTAP, SOAT2, and IMPDH2 to be localized inside the mitochondria, whereas ABCC6 was in the mitochondria-associated membrane. These findings demonstrate the synergies of a multi-omics approach to study complex metabolic processes, and this provides a resource for further discovery and analysis of proteoforms, modified proteins, and protein localization.


Assuntos
Proteínas Mitocondriais/metabolismo , Especificidade de Órgãos , Proteoma/metabolismo , Animais , Variação Genética , Espectrometria de Massas , Camundongos , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Mol Biotechnol ; 60(5): 339-349, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29524201

RESUMO

There have been many attempts to unveil the therapeutic potential of antisense molecules during the last decade. Due to its specific role in canonical Wnt signalling, ß-catenin is a potential target for an antisense-based antitumour therapy. In order to establish such a strategy with peptide nucleic acids, we developed a reporter assay for quantification of antisense effects. The luciferase-based assay detects splice blocking with high sensitivity. Using this assay, we show that the splice donor of exon 13 of ß-catenin is particularly suitable for an antisense strategy, as it results in a truncated protein which lacks transactivating functions. Since the truncated proteins retain the interactions with Tcf/Lef proteins, they act in a dominant negative fashion competing with wild-type proteins and thus blocking the transcriptional activity of ß-catenin. Furthermore, we show that the truncation does not interfere with binding of cadherin and α-catenin, both essential for its function in cell adhesion. Therefore, the antisense strategy blocks Wnt signalling with high efficiency but retains other important functions of ß-catenin.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Ácidos Nucleicos Peptídicos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Éxons , Células HEK293 , Células HeLa , Humanos , Sítios de Splice de RNA/efeitos dos fármacos , Fatores de Transcrição TCF/metabolismo , beta Catenina/antagonistas & inibidores , beta Catenina/metabolismo
3.
BMC Biotechnol ; 13: 53, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23815821

RESUMO

BACKGROUND: Diffusion of small molecules into fish embryos is essential for many experimental procedures in developmental biology and toxicology. Since we observed a weak uptake of lithium into medaka eggs we started a detailed analysis of its diffusion properties using small fluorescent molecules. RESULTS: Contrary to our expectations, not the rigid outer chorion but instead membrane systems surrounding the embryo/yolk turned out to be the limiting factor for diffusion into medaka eggs. The consequence is a bi-phasic uptake of small molecules first reaching the pervitelline space with a diffusion half-time in the range of a few minutes. This is followed by a slow second phase (half-time in the range of several hours) during which accumulation in the embryo/yolk takes place. Treatment with detergents improved the uptake, but strongly affected the internal distribution of the molecules. Testing electroporation we could establish conditions to overcome the diffusion barrier. Applying this method to lithium chloride we observed anterior truncations in medaka embryos in agreement with its proposed activation of Wnt signalling. CONCLUSIONS: The diffusion of small molecules into medaka embryos is slow, caused by membrane systems underneath the chorion. These results have important implications for pharmacologic/toxicologic techniques like the fish embryo test, which therefore require extended incubation times in order to reach sufficient concentrations in the embryos.


Assuntos
Eletroporação , Embrião não Mamífero/metabolismo , Fluoresceína/farmacocinética , Lítio/farmacocinética , Oryzias/embriologia , Oryzias/metabolismo , Laranja de Acridina/farmacocinética , Animais , Córion/metabolismo , Detergentes/farmacocinética , Difusão , Corantes Fluorescentes/farmacocinética , Óvulo/metabolismo , Rodaminas/farmacocinética , Via de Sinalização Wnt
4.
J Control Release ; 158(3): 424-32, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22197778

RESUMO

Cell and gene therapies have an enormous range of potential applications, but as for most other therapies, dosing is a critical issue, which makes regulated gene expression a prerequisite for advanced strategies. Several inducible expression systems have been established, which mainly rely on small molecules as inducers, such as hormones or antibiotics. The application of these inducers is difficult to control and the effects on gene regulation are slow. Here we describe a novel system for induction of gene expression in encapsulated cells. This involves the modification of cells to express potential therapeutic genes under the control of a heat inducible promoter and the co-encapsulation of these cells with magnetic nanoparticles. These nanoparticles produce heat when subjected to an alternating magnetic field; the elevated temperatures in the capsules then induce gene expression. In the present study we define the parameters of such systems and provide proof-of-principle using reporter gene constructs. The fine-tuned heating of nanoparticles in the magnetic field allows regulation of gene expression from the outside over a broad range and within short time. Such a system has great potential for advancement of cell and gene therapy approaches.


Assuntos
Compostos Férricos/administração & dosagem , Regulação da Expressão Gênica , Campos Magnéticos , Nanopartículas Metálicas/administração & dosagem , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Hipertermia Induzida , Luciferases/genética , Polímeros/química , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA