Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(16): 6647-6655, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37058300

RESUMO

Soil contaminations with per- and polyfluoroalkyl substances (PFAS) are of great concern due to their persistence, leading to continuous, long-term groundwater contamination. A composite sample from contaminated agricultural soil from northwestern Germany (Brilon-Scharfenberg, North Rhine-Westphalia) was investigated in depth with nontarget screening (NTS) (Kendrick mass defect and MS2 fragment mass differences with FindPFΔS). Several years ago, selected PFCAs and PFSAs were identified on this site by detection in nearby surface and drinking water. We identified 10 further PFAS classes and 7 C8-based PFAS (73 single PFAS) previously unknown in this soil including some novel PFAS. All PFAS classes except for one class comprised sulfonic acid groups and were semi-quantified with PFSA standards from which ∼97% were perfluorinated and are not expected to be degradable. New identifications made up >75% of the prior known PFAS concentration, which was estimated to >30 µg/g. Pentafluorosulfanyl (-SF5) PFSAs are the dominant class (∼40%). Finally, the soil was oxidized with the direct TOP (dTOP) assay, revealing PFAA precursors that were covered to a large extent by identified H-containing PFAS and additional TPs (perfluoroalkyl diacids) were detected after dTOP. In this soil, however, dTOP + target analysis covers <23% of the occurring PFAS, highlighting the importance of NTS to characterize PFAS contaminations more comprehensively.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Poluição Ambiental/análise , Ácidos Sulfônicos/análise , Solo
2.
J Contam Hydrol ; 241: 103812, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34245996

RESUMO

PFAS contaminated compost materials have been applied over the last few decades to agricultural fields in Germany, resulting in large-scale diffuse PFAS plumes. The leaching behavior of PFAS from the first two identified contaminated agricultural sites in Germany were investigated, one at Brilon-Scharfenberg, North Rhine-Westphalia Site (BS-NRW), and the other at Rastatt/Mannheim, Baden-Württemberg. The specific objectives of this study were to assess the longevity of the PFAS agricultural sources and compare standardized column percolation tests to long-term leaching of PFAS from contaminated sites. The advection-dispersion model (ADM) was used to compare the leaching behavior of PFOA and PFOS from standardized column percolation tests and long-term field leaching data from the BS-NRW site. Column leaching tests conducted with PFOS and PFOA contaminated soil simulated the initial rapid decline but did not predict the long-term behavior (tailing) observed at the field site over 12 years. Trend analyses of the PFAS field data from the BS-NRW showed that concentrations had stabilized and that individual PFAS exhibited distinct seasonal fluctuations; the latter is likely due to the ongoing transformation of precursors and a seasonal influence on production rates of mobile PFAS. Mass balances conducted at both sites indicate that complete removal of these compounds will likely take years to decades to occur, which is expected from the results of the column leaching tests.


Assuntos
Fluorocarbonos , Poluentes do Solo , Poluição Ambiental , Fluorocarbonos/análise , Alemanha , Solo , Poluentes do Solo/análise
3.
Biodegradation ; 32(5): 577-593, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34081242

RESUMO

Experiments with Fe(III)-rich, chloroethene-contaminated sediment demonstrated that trichloroethylene (TCE) and vinyl chloride (VC) were completely reduced to ethene regardless of whether electron donor(s) were added at 1 × stoichiometry or 10 × stoichiometry relative to all-electron acceptors. Unamended controls uniformly reduced TCE to ethene with a mean time to complete dechlorination (operationally defined as the presence of stoichiometric ethene production) of 79 days. Adding 1 × and 10 × acetate hindered the rate and extent of TCE and VC reduction relative to unamended controls, with several only partially reduced when the experiments were terminated. Adding high molecular mass (soybean oil derivative) substrates did not increase microbial reductive dechlorination relative to unamended incubations, and in many cases, hindered microbial dechlorination in favor of methanogenesis. The mean time to complete dechlorination was comparable between low (× 1) and high (× 10) electron donor concentration for all lipid-based electron donors tested. Those tested included Newman Zone® Standard without sodium lactate (96 vs. 75 days, respectively), CAP 18 ME (85 vs. 94 days, respectively), EOS 598B42 (68 vs. 72 days, respectively), and acetate (134 vs. 125 days, respectively). These data suggest that the addition of an electron donor does not always increase the rate and extent of reductive dechlorination but will increase costs. In particular, increasing the concentration of electron donors higher than the stoichiometric demand only decreased complete microbial reductive dechlorination, which is the opposite of most standard "more time and more electrons" approaches. These data argue that site-specific electron donor demands must be evaluated, and in some cases, a monitored natural attenuation (MNA) approach is most favorable.


Assuntos
Elétrons , Tricloroetileno , Biodegradação Ambiental , Carbono , Compostos Férricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA