Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 472: 134382, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38703675

RESUMO

The photocatalytic efficiency for removing volatile organic compounds (VOCs) is significantly influenced by operational parameters like humidity and flow velocity, exhibiting notable and inconsistent fluctuations in both lab-scale and large-scale demonstrations. In this study, operando spectroscopy and isotope analysis were employed to investigate the correlation between humidity levels and degradation of gaseous acetaldehyde using TiO2 photocatalysts, aiming to demonstrate the scaling-up of photocatalytic air purifier. It was observed that rate constants for the mineralization of acetaldehyde rapidly decreased by 30% as relative humidity increased from 25% to 80% in the flow system (with an air velocity, v = 0.78 m/s). However, batch system showed smaller change with only a 10% reduction of the rate constant. Humidity fluctuations were more pronounced under high-speed conditions and were amplified in air purifier (v = 3.8 m/s). Time-resolved operando spectroscopy using an 13C isotope of acetaldehyde revealed that humidity's distinct role in dark adsorption and photocatalytic reactions. Water was found to inhibit the formation of crotonaldehyde during aldol condensation reaction in dark condition. Moreover, water suppressed photocatalytic mineralization by inhibiting acetate oxidation to formate. These findings provide valuable insights for improving realistic air purification processes, underscoring the importance of identifying key intermediates and controlling humidity to enhance the selectivity of gaseous pollutant oxidation reactions.

2.
Nat Commun ; 14(1): 520, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792592

RESUMO

Particulate matter (PM) and volatile organic compounds (VOCs) are recognised as hazardous air pollutants threatening human health. Disposable filters are generally used for air purification despite frequent replacement and waste generation problems. However, the development of a novel regenerable and robust filter for long-term use is a huge challenge. Here, we report on a new class of facile water-washing regenerable ceramic catalyst filters (CCFs), developed to simultaneously remove PM (>95%) and VOCs (>82%) in single-pass and maximized space efficiency by coating the inner and outer filter channels with an inorganic membrane and a Cu2O/TiO2 photocatalyst, respectively. The CCFs reveal four-fold increase in the maximum dust loading capacity (approximately 20 g/L) in relation to conventional filters (5 g/L), and can be reused after ten regeneration capability with simple water washing retaining initial PM and VOC removal performances. Thus, the CCFs can be well-suited for indoor and outdoor air purification for 20 years, which shows a huge increase in lifetime compared to the 6-month lifespan of conventional filters. Finally, we believe that the development and implementation of CCFs for air purification can open new avenues for sustainable technology through renewability and zero-waste generation.

3.
RSC Adv ; 10(45): 26756-26764, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35515763

RESUMO

The Zr solvent solution method, which allows primary and secondary particles of LiNi0.90Co0.05Mn0.05O2 (NCM) to be uniformly doped with Zr and simultaneously to be coated with an Li2ZrO3 layer, is introduced in this paper. For Zr doped NCM, which is formed using the Zr solvent solution method (L-NCM), most of the pinholes inside the precursor disappear owing to the diffusion of the Zr dopant solution compared with Zr-doped NCM, which is formed using the dry solid mixing method from the (Ni0.90Co0.05Mn0.05)(OH)2 precursor and the Zr source (S-NCM), and Li2ZrO3 is formed at the pinhole sites. The mechanical strength of the powder is enhanced by the removal of the pinholes by the formation of Li2ZrO3 resulting from diffusion of the solvent during the mixing process, which provides protection from cracking. The coating layer functions as a protective layer during the washing process for removing the residual Li. The electrochemical performance is improved by the synergetic effects of suitable coatings and the enhanced structural stability. The capacity-retentions for 2032 coin cells are 86.08%, 92.12%, and 96.85% at the 50th cycle for pristine NCM, S-NCM, and L-NCM, respectively. The superiority of the liquid mixing method is demonstrated for 18 650 full cells. In the 300th cycle in the voltage range of 2.8-4.35 V, the capacity-retentions for S-NCM and L-NCM are 77.72% and 81.95%, respectively.

4.
ACS Appl Mater Interfaces ; 10(46): 39581-39589, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30370757

RESUMO

Platinum-based metal alloys have been generally developed to provide high carbon monoxide resistance in the anodes of direct methanol fuel cells. We report the potential of bimetallic platinum/iridium electrocatalysts in preserving the outstanding carbon monoxide tolerance obtained from both experimental and theoretical studies, which represents the enhanced electrochemical performance of methanol oxidation and the in-depth and stepwise investigations for reaction mechanisms, respectively. In this study, the findings highlight the dual-enhancement characteristics of low carbon monoxide adsorption energy (electronic effect) and carbon monoxide oxidative removal (bifunctional effect) compared with various electrocatalysts such as platinum, iridium, and platinum/ruthenium alloys. In addition, the reaction affinity of platinum/iridium alloys for methanol dehydrogenation is also studied in accordance with atomistic properties, such as adsorption energy and electronic band gap, to understand the electrochemical performance compared to Pt. The results obtained indicate that the platinum/iridium alloy surface played diverse roles in terms of its multifunctional behaviors for carbon monoxide tolerance, including the favorable mechanism of methanol dehydrogenation. It turns out that throughout the theoretical in-depth studies, platinum/iridium alloys are promising candidates in terms of the extension for electrocatalytic material designs that differ from Ru in direct methanol fuel cells.

5.
Chemphyschem ; 19(1): 116-122, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28906585

RESUMO

The thermal stability of lithium-rich layered oxide with the composition Li(Li1/6 Ni1/6 Co1/6 Mn1/2 )O2-x Fx (x=0.00 and 0.05) is evaluated for use as a cathode material in lithium-ion batteries. Thermogravimetric analysis, evolved gas analysis, and differential scanning calorimetry show that, upon fluorine doping, degradation of the lithium-rich layered oxides commences at higher temperatures and the exothermic reaction is suppressed. Hot box tests also reveal that the prismatic cell with the fluorine-doped powder does not explode, whereas that with the undoped one explodes at about 135 °C with a sudden temperature increase. XRD analysis indicates that fluorine doping imparts the lithium-rich layered oxide with better thermal stability by mitigating oxygen release at elevated temperatures that cause an exothermic reaction with the electrolyte. The origin of the reduced oxygen release from the fluorinated lithium-rich layered oxide is also discussed.

6.
Chem Commun (Camb) ; 47(20): 5792-4, 2011 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-21494717

RESUMO

The strong interaction between PdNi alloys and WC makes PdNi/WC a novel Pt-free electrocatalyst for the anode hydrogen oxidation reaction of polymer electrolyte membrane fuel cells with activity and stability comparable to those of the conventional Pt/C catalysts.

7.
Chem Commun (Camb) ; 46(45): 8600-2, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-20890501

RESUMO

Mesoporous tungsten carbides displayed an excellent solar conversion efficiency (7.01%) as a counter electrode for dye sensitized solar cells under 100 mW cm(-2), AM 1.5G illumination, which corresponded to ca. 85% of the efficiency of the conventional platinum electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...