Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 23(8): 4726-4740, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34296500

RESUMO

Faecalibacterium prausnitzii is a dominant member of healthy human colon microbiota, regarded as a beneficial gut bacterium due to its ability to produce anti-inflammatory substances. However, little is known about how F. prausnitzii utilizes the nutrients present in the human gut, influencing its prevalence in the host intestinal environment. The phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) is a widely distributed and highly efficient carbohydrate transport system found in most bacterial species that catalyses the simultaneous phosphorylation and import of cognate carbohydrates; its components play physiological roles through interaction with other regulatory proteins. Here, we performed a systematic analysis of the 16 genes encoding putative PTS components (2 enzyme I, 2 HPr, and 12 enzyme II components) in F. prausnitzii A2-165. We identified the general PTS components responsible for the PEP-dependent phosphotransfer reaction and the sugar-specific PTS components involved in the transport of two carbohydrates, N-acetylglucosamine and fructose, among five enzyme II complexes. We suggest that the dissection of the functional PTS in F. prausnitzii may help to understand how this species outcompetes other bacterial species in the human intestine.


Assuntos
Faecalibacterium prausnitzii , Fosfotransferases , Dissecação , Faecalibacterium prausnitzii/metabolismo , Humanos , Fosforilação , Fosfotransferases/genética , Fosfotransferases/metabolismo , Prevalência
2.
Nat Commun ; 10(1): 5358, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767877

RESUMO

Biofilm formation protects bacteria from stresses including antibiotics and host immune responses. Carbon sources can modulate biofilm formation and host colonization in Vibrio cholerae, but the underlying mechanisms remain unclear. Here, we show that EIIAGlc, a component of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), regulates the intracellular concentration of the cyclic dinucleotide c-di-GMP, and thus biofilm formation. The availability of preferred sugars such as glucose affects EIIAGlc phosphorylation state, which in turn modulates the interaction of EIIAGlc with a c-di-GMP phosphodiesterase (hereafter referred to as PdeS). In a Drosophila model of V. cholerae infection, sugars in the host diet regulate gut colonization in a manner dependent on the PdeS-EIIAGlc interaction. Our results shed light into the mechanisms by which some nutrients regulate biofilm formation and host colonization.


Assuntos
3',5'-GMP Cíclico Fosfodiesterases/metabolismo , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Açúcares/metabolismo , Vibrio cholerae/enzimologia , 3',5'-GMP Cíclico Fosfodiesterases/genética , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , GMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/fisiologia
3.
Front Microbiol ; 9: 1112, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896177

RESUMO

The bacterial phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) regulates a variety of cellular processes in addition to catalyzing the coupled transport and phosphorylation of carbohydrates. We recently reported that, in the presence of glucose, HPr of the PTS is dephosphorylated and interacts with pyruvate kinase A (PykA) catalyzing the conversion of PEP to pyruvate in Vibrio vulnificus. Here, we show that this interaction enables V. vulnificus to survive H2O2 stress by increasing pyruvate production. A pykA deletion mutant was more susceptible to H2O2 stress than wild-type V. vulnificus without any decrease in the expression level of catalase, and this sensitivity was rescued by the addition of pyruvate. The H2O2 sensitivity difference between wild-type and pykA mutant strains becomes more apparent in the presence of glucose. Fungi isolated from the natural habitat of V. vulnificus retarded the growth of the pykA mutant more severely than the wild-type strain in the presence of glucose by glucose oxidase-dependent generation of H2O2. These data suggest that V. vulnificus has evolved to resist the killing action of its fungal competitors by increasing pyruvate production in the presence of glucose.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...