Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 108(2): 296-301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37669173

RESUMO

Erwinia pyrifoliae, a causal agent of black shoot blight in apple and pear trees, is a plant pathogenic bacterium first reported in South Korea. The symptoms of black shoot blight are very similar to those of the fire blight disease in apple and pear trees caused by E. amylovora, as E. pyrifoliae has a genetically very close relationship with E. amylovora. Recently, there have been reports that E. pyrifoliae causes disease in European strawberries, resulting in severe fruit loss that aroused great concern about its spread, distribution, and host range. Therefore, it is essential to establish a trustworthy approach to understanding the distribution patterns of E. pyrifoliae based on the genetic background to strengthen the barrier of potential spreading risks, although advanced methods have been provided to accurately detect E. pyrifoliae and E. amylovora. Consequently, this study discovered a noble and noteworthy gene, rsxC, capable of providing the pathogen genotype by comparing E. pyrifoliae genomic sequences in the international representative genome archive. Different numbers of 40-unit amino acid repeats in this gene among the strains induced intraspecific traits in RsxC. By comparing their repeat pattern, E. pyrifoliae isolates were divided into two main groups, branching into several clades via sequence alignment of 35 E. pyrifoliae isolates from various apple orchards from 2020 to 2021 in South Korea. The newly discovered quadraginta amino acid repeat within this gene would be a valuable genetic touchstone for determining the genotype and distribution pattern of E. pyrifoliae strains, ultimately leading to exploring their evolution. The function of amino acid repeats and the biological significance of strains need to be elucidated further.


Assuntos
Erwinia , Malus , Pyrus , Transporte de Elétrons , Erwinia/genética , Erwinia/metabolismo , Pyrus/microbiologia , Variação Genética , Aminoácidos/genética , Aminoácidos/metabolismo
2.
Sci Rep ; 13(1): 17876, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857695

RESUMO

Erwinia amylovora is a notorious plant pathogenic bacterium of global concern that has devastated the apple and pear production industry worldwide. Nevertheless, the approaches available currently to understand the genetic diversity of E. amylovora remain unsatisfactory because of the lack of a trustworthy index and data covering the globally occurring E. amylovora strains; thus, their origin and distribution pattern remains ambiguous. Therefore, there is a growing need for robust approaches for obtaining this information via the comparison of the genomic structure of Amygdaloideae-infecting strains to understand their genetic diversity and distribution. Here, the whole-genome sequences of 245 E. amylovora strains available from the NCBI database were compared to identify intraspecific genes for use as an improved index for the simple classification of E. amylovora strains regarding their distribution. Finally, we discovered two kinds of strain-typing protein-encoding genes, i.e., the SAM-dependent methyltransferase and electron transport complex subunit RsxC. Interestingly, both of these proteins carried an amino acid repeat in these strains: SAM-dependent methyltransferase comprised a single-amino-acid repeat (asparagine), whereas RsxC carried a 40-amino-acid repeat, which was differentially distributed among the strains. These noteworthy findings and approaches may enable the exploration of the genetic diversity of E. amylovora from a global perspective.


Assuntos
Erwinia amylovora , Erwinia , Malus , Rosaceae , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Aminoácidos/metabolismo , Rosaceae/microbiologia , Malus/microbiologia , Variação Genética , Metiltransferases/metabolismo , Doenças das Plantas/microbiologia
3.
Plant Pathol J ; 39(4): 409-416, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37550986

RESUMO

Bacterial leaf blight of carrots caused by Xanthomonas hortorum pv. carotae (Xhc) is an important worldwide seed-borne disease. In 2012 and 2013, symptoms similar to bacterial leaf blight were found in carrot farms in Jeju Island, Korea. The phenotypic characteristics of the Korean isolation strains were similar to the type strain of Xhc. Pathogenicity showed symptoms on the 14th day after inoculation on carrot plants. Identification by genetic method was multi-position sequencing of the isolated strain JJ2001 was performed using four genes (danK, gyrB, fyuA, and rpoD). The isolated strain was confirmed to be most similar to Xhc M081. Furthermore, in order to analyze the genetic characteristics of the isolated strain, whole genome analysis was performed through the next-generation sequencing method. The draft genome size of JJ2001 is 5,443,372 bp, which contains 63.57% of G + C and has 4,547 open reading frames. Specifically, the classification of pathovar can be confirmed to be similar to that of the host lineage. Plant pathogenic factors and determinants of the majority of the secretion system are conserved in strain JJ2001. This genetic information enables detailed comparative analysis in the pathovar stage of pathogenic bacteria. Furthermore, these findings provide basic data for the distribution and diagnosis of Xanthomonas hortorum pv. carotae, a major plant pathogen that infects carrots in Korea.

4.
Plant Dis ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430478

RESUMO

Fire blight is one of the destructive plant diseases caused by Erwinia amylovora and causes enormous economic losses worldwide. Fire blight was initially reported in apples, pears, and Chinese quince (Park et al. 2016; Myung et al. 2016a, 2016b) in Korea, but recent studies have reported new hosts such as apricot (Lee et al. 2021) and mountain ash (Lim et al, 2023). These reports indicate that fire blight is likely to disperse to new hosts in Korea. During the nationwide survey in June 2021, we observed typical symptoms of blossom blight and shoot blight on a Chinese hawthorn (Crataegus pinnatifida Bunge) just near an orchard (37°09'21.7"N, 127°35'02.6"E) in Icheon, Gyeonggi Province, where fire blight of Asian pear occurred. For identifying its causal agent, bacterial isolates were recovered after incubating at 28 ℃ for 24 hours on tryptic soy agar (TSA) medium (BD Difco, USA) from blighted leaves and shoots that were surface sterilized with 70% alcohol for 30 sec and homogenized in 500 µl of 10mM MgCl2. Pure cultures of white to mucoid colonies were grown on mannitol glutamate yeast extract (MGY) medium, a semi-selective medium for E. amylovora (Shrestha et al, 2003). Two isolates produced 1.5 kb amplicon through colony PCR using amsB primers (Bereswill et al. 1995). Two strains (CPFB26 and CPFB27) from the Chinese hawthorn produced amplicons identical to that from the TS3128 strain of E. amylovora, isolated from the pear tree and identified in 2016 (Park et al. 2016). For the partial 16s rRNA sequences, the total DNA of these two strains was extracted using the Wizard DNA prep kit (Promega, USA), and PCR was performed using fD1 (5'-AGAGTTTGATCCTGGCTCAG-3') and Rp2 (5'-ACGGCTACCTTGTTACGACTT-3') primer sets and further sequenced (Weisburg et al. 1991). These sequences belonged to the E. amylovora clade and were identified as E. amylovora in phylogenetic analysis (GenBank accession no. OP753569 and OP753570). Based on BLASTN analysis, CPFB26 and CPFB27 showed 99.78% similarity to the sequences of the E. amylovora strains TS3128, CFBP 1430, and ATCC 49946. To confirm pathogenicity of the isolates, 10 ㎕ bacterial suspensions (1.5 ⅹ 108 CFU/ml) was injected through the veins of the upper 2nd leaf of 3-month-old clone of apple rootstock (Malus domestica cv. M29) and incubated for six days at 28 ℃ in a chamber with 12 hours of light per day. Petioles and stems turned red hue, and the shoots finally blighted. To complete Koch's postulates, colonies were recovered on TSA medium from the inoculated apple rootstocks and verified through colony PCR for the amsB and A/B primer set (Powney et al. 2011). Hawthorn has been reported as an epidemiologically important alternate host plant of fire blight (van der Zwet et al. 2012). This study is the first to report fire blight caused by E. amylovora in Chinese hawthorn in Korea. Because Chinese hawthorn is natively distributed in Korea and is widely used as a landscaping tree (Jang et al. 2006), the findings of this study suggest that early monitoring could prevent the spread of fire blight through natural hosts.

5.
Plant Dis ; 107(3): 624-627, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35900343

RESUMO

Fire blight, caused by the bacterial pathogen Erwinia amylovora, is a highly destructive disease of apple and pear. Because the apple tree gets systemically infected with E. amylovora and eventually dies, E. amylovora is a considerably important pathogen in the orchard that requires long-term management. In addition, it is crucial to prevent the spread of the pathogen by expeditious diagnosis. In this study, via comparative approaches to the genome sequences of the strains of various Erwinia spp., we designed specific primers targeting a hypothetical gene that is single copy and located in the chromosomal DNA of E. amylovora. This primer set specifically amplified the DNA of E. amylovora but no other bacteria, including E. pyrifoliae, Pectobacterium spp., Pantoea spp., and Dickeya chrysanthemi. Furthermore, the SYBR Green-based real-time PCR using the primer set allowed accurate estimation of the population of E. amylovora. Developing a rapid and accurate diagnostic method using the novel primer set enables effective defense against pathogen spread through continuous monitoring and quick response.


Assuntos
Erwinia amylovora , Malus , Pyrus , Erwinia amylovora/genética , Reação em Cadeia da Polimerase em Tempo Real , Malus/microbiologia , Pyrus/microbiologia
6.
Plant Pathol J ; 38(5): 482-489, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36221920

RESUMO

Fire blight caused by Erwinia amylovora (Ea) is a devastating disease in apple and pear trees. Oxolinic acid (OA), a quinolone family antibiotic that inhibits DNA gyrase, has been employed to control fire blight in South Korea since 2015. The continuous use of this bactericide has resulted in the emergence of OA-resistant strains in bacterial pathogens in other countries. To investigate the occurrence of OA-resistant Ea strains in South Korea, we collected a total of 516 Ea isolates from diseased apple and pear trees in 2020-2021 and assessed their sensitivities to OA. We found that all isolates were susceptible to OA. To explore the possibility of emerging OA-resistant Ea by continuous application of OA, we exposed Ea stains to a range of OA concentrations and constructed OA-resistant mutant strains. Resistance was associated with mutations in the GyrA at codons 81 and 83, which result in glycine to cysteine and serine to arginine amino acid substitutions, respectively. The in vitro growth of the mutants in nutrient media and their virulence in immature apple fruits were lower than those of wild-type. Our results suggest that OA-resistance decreases the fitness of Ea. Future work should clarify the mechanisms by which OA-resistance decreases virulence of this plant pathogen. Continuous monitoring of OA-resistance in Ea is required to maintain the efficacy of this potent bactericide.

7.
Plant Pathol J ; 38(3): 194-202, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35678052

RESUMO

Erwinia amylovora and Erwinia pyrifoliae cause fire blight and black-shoot blight, respectively, in apples and pears. E. pyrifoliae is less pathogenic and has a narrower host range than that of E. amylovora. Fire blight and black-shoot blight exhibit similar symptoms, making it difficult to distinguish one bacterial disease from the other. Molecular tools that differentiate fire blight from black-shoot blight could guide in the implementation of appropriate management strategies to control both diseases. In this study, a primer set was developed to detect and distinguish E. amylovora from E. pyrifoliae by conventional polymerase chain reaction (PCR). The primers produced amplicons of different sizes that were specific to each bacterial species. PCR products from E. amylovora and E. pyrifoliae cells at concentrations of 104 cfu/ml and 107 cfu/ml, respectively, were amplified, which demonstrated sufficient primer detection sensitivity. This primer set provides a simple molecular tool to distinguish between two types of bacterial diseases with similar symptoms.

9.
Plant Pathol J ; 37(4): 404-412, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34365752

RESUMO

Despite the plant microbiota plays an important role in plant health, little is known about the potential interactions of the flower microbiota with pathogens. In this study, we investigated the microbial community of apple blossoms when infected with Erwinia amylovora. The long-read sequencing technology, which significantly increased the genome sequence resolution, thus enabling the characterization of fire blight-induced changes in the flower microbial community. Each sample showed a unique microbial community at the species level. Pantoea agglomerans and P. allii were the most predominant bacteria in healthy flowers, whereas E. amylovora comprised more than 90% of the microbial population in diseased flowers. Furthermore, gene function analysis revealed that glucose and xylose metabolism were enriched in diseased flowers. Overall, our results showed that the microbiome of apple blossoms is rich in specific bacteria, and the nutritional composition of flowers is important for the incidence and spread of bacterial disease.

10.
Plant Dis ; 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33048592

RESUMO

During a survey in May 2020, symptoms of blight were observed on apricot (Prunus armeniaca cv. undetermined) in an orchard (37°06´01.5″N 127°57´44.9″E) in Chungju, South Korea, where fire blight of apple occurred. Three apricot trees in the apple orchard were heavily diseased and showed severe shoot blight and stem canker symptoms. Bacterial isolates were recovered on King's medium B from leaves and twigs that were surface-sterilized with 70% alcohol. Colonies with uniform mucoid, smooth surfaces were collected. DNA from nine isolates did not yield an amplicon in a PCR assay for detection of Erwinia pyrifoliae using primer set CPS1/CPS2c (Kim et al. 2001). Each isolate was positive in PCR assays for E. amylovora using primer sets A/B (Bereswill et al. 1992) and AJ75/76 (Llop et al. 2000) that target pEA29. Sequencing of the PCR products resulted in 99.9% (929 bp out of 930 bp) and 100% (747 bp out of 747 bp) identity with sequences of E. amylovora FB20 (GeneBank: CP050240), respectively. Amplifications of the partial 16S rRNA (GeneBank: LC557153) and hrpN (GeneBank: LC575997) genes were performed, and the products were sequenced. The primers used to amplify 16S rRNA were 518F: 5'-CCAGCAGCCGCGGTAATACG-3' and 800R: 5'-TACCAGGGTATCTAATCC-3', and those for the hrpN genes were HRPN1: 5'-ATGAGTCTGAATACAAG-3' and HRPN3c: 5'-GCTTGCCAAGTGCCATA-3'. BLAST analyses showed 99.8% (1439 bp out of 1442 bp) and 100% (1136 bp out of 1136 bp) identities, respectively, to the sequences of E. amylovora FB20. The ability of the isolates to induce a hypersensitive reaction on tobacco (Nicotiana tabacum cv. Xanthi) leaves was also evaluated. Bacterial suspensions (1.5 ⅹ 108 CFU) of 2 isolates were injected into tobacco leaves, and after 48 h, both isolates caused a hypersensitive response. To confirm pathogenicity of isolates, 3-mm-deep holes in five immature apricot (cv. Goldcot) and five immature apple (cv. Fuji) fruits were inoculated with 10 µl bacterial suspension (1.5 ⅹ 108 CFU/ml). The inoculated fruits were placed in a humid plastic box. After 7 days at 27℃, severe necrosis and bacterial ooze were present at the inoculated sites in three repeated tests. No symptoms were observed on fruits inoculated with sterile water. To complete Koch's postulates, bacteria were reisolated from the inoculated apricot and apple fruits. PCR using the specific primer sets stated above confirmed the identity as E. amylovora. Thus, based on disease symptoms, sequences, and pathogenicity, the bacterium causing blight of apricot was identified as E. amylovora. Natural infections of E. amylovora on apricot trees have been reported in the Czech Republic and Hungary (Korba and Sillerova 2011; Vegh and Palkovics 2013). Fire blight was observed in the Czech Republic on apricot trees near pear seedlings, which are highly susceptible to E. amylovora (Korba and Sillerova 2011). Natural infections of E. amylovora on Japanese plum planted adjacent to an apple orchard with severe fire blight has been reported in the United States (Mohan and Thomson 1996). Moreover, susceptibility to fire blight has been reported for apricot and Japanese plum cultivars (Mohan and Bijman 1999). To our knowledge, this the first report of fire blight of apricot caused by E. amylovora in Korea. This report is important because it provides evidence that apricot may be an overlooked reservoir for E. amylovora, in addition to apple, pear, and other rosaceous plants, in Korea. An intensive survey for additional host plants for the fire blight pathogen will be continued in Korea. This work was supported by a grant from the Agenda program (PJ01530202) of Rural Development Administration, Republic of Korea.

11.
Int J Food Microbiol ; 267: 62-69, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29291460

RESUMO

To assess the risk of fumonisin contamination in Korean cereals, we isolated colonies of the Fusarium fujikuroi species complex (FFSC) from barley, maize, rice and soybean samples from 2011 to 2015. A total of 878 FFSC strains were isolated mostly from maize and rice, and species identity of the isolates were determined using the DNA sequence of the translation elongation factor 1-α (TEF-1α) and RNA polymerase II (RPB2) genes. Fusaria recovered from Korean cereals included F. fujikuroi (317 isolates and a frequency of 36%), F. proliferatum (212 isolates and 24.1%), F. verticillioides (170 isolates and 19.4%), F. concentricum (86 strains and 9.8%), F. andiyazi (56 isolates and 6.4%), F. subglutinans (28 isolates and 3.2%), F. thapsinum (5 isolates and 0.6%), and F. circinatum (2 isolates and 0.2%). The rice samples were dominated by F. fujikuroi (47.4%), F. proliferatum (27.3%), and F. concentricum (15.1%), whereas maize samples were dominated by F. verticillioides (33.9%), F. fujikuroi (25.3%), and F. proliferatum (21.1%). A phylogenetic analysis of 70 representative isolates demonstrated that each species was resolved as genealogically exclusive in the ML tree. Fumonisin production potential was evaluated using a PCR assay for the fumonisin biosynthesis gene, FUM1 in all of the isolates. Most of the isolates tested (94%) were positive for FUM1. All of the isolates assigned to F. fujikuroi, F. proliferatum, F. verticillioides and F. thapsinum were positive for FUM1 irrespective of their host origin. Seventy-seven representative isolates positive for FUM1 were examined for fumonisin production in rice medium. The majority of F. proliferatum (26/27, 96.3%), F. verticillioides (16/17, 94.1%) and F. fujikuroi (19/25, 76.0%) produced both FB1 and FB2. Notably, 16 of 19 fumonisin-producing F. fujikuroi produced >1000µg/g of fumonisins (FB1+FB2) in rice medium, which is higher than that in previous reports. These results suggest that F. fujikuroi can produce high levels of fumonisins similar to F. verticillioides and F. proliferatum.


Assuntos
Grão Comestível/química , Grão Comestível/microbiologia , Fumonisinas/química , Fusarium/isolamento & purificação , Biodiversidade , Fumonisinas/análise , Fumonisinas/metabolismo , Fusarium/classificação , Fusarium/genética , Fator 1 de Elongação de Peptídeos/genética , Filogenia , RNA Polimerase II/genética
12.
Sensors (Basel) ; 18(1)2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29301319

RESUMO

Fusarium is a common fungal disease in grains that reduces the yield of barley and wheat. In this study, a near infrared reflectance spectroscopic technique was used with a statistical prediction model to rapidly and non-destructively discriminate grain samples contaminated with Fusarium. Reflectance spectra were acquired from hulled barley, naked barley, and wheat samples contaminated with Fusarium using near infrared reflectance (NIR) spectroscopy with a wavelength range of 1175-2170 nm. After measurement, the samples were cultured in a medium to discriminate contaminated samples. A partial least square discrimination analysis (PLS-DA) prediction model was developed using the acquired reflectance spectra and the culture results. The correct classification rate (CCR) of Fusarium for the hulled barley, naked barley, and wheat samples developed using raw spectra was 98% or higher. The accuracy of discrimination prediction improved when second and third-order derivative pretreatments were applied. The grains contaminated with Fusarium could be rapidly discriminated using spectroscopy technology and a PLS-DA discrimination model, and the potential of the non-destructive discrimination method could be verified.


Assuntos
Espectroscopia de Luz Próxima ao Infravermelho , Fusarium , Hordeum , Análise dos Mínimos Quadrados , Triticum
13.
Plant Pathol J ; 33(5): 499-507, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29018313

RESUMO

In an attempt to develop a biological control agent against mycotoxigenic Fusarium species, we isolated Bacillus amyloliquefaciens strain DA12 from soil and explored its antimicrobial activities. DA12 was active against the growth of mycotoxigenic F. asiaticum, F. graminearum, F. proliferatum, and F. verticillioides both in vitro and in planta (maize). Further screening using dual culture extended the activity range of strain DA12 against other fungal pathogens including Botrytis cinerea, Colletotrichum coccodes, Endothia parasitica, Fusarium oxysporum, Raffaelea quercus-mongolicae, and Rhizoctonia solani. The butanol extract of the culture filtrate of B. amyloliquefaciens DA12 highly inhibited the germination of F. graminearum macroconidia with inhibition rate 83% at a concentration of 31.3 µg/ml and 100% at a concentration of 250 µg/ml. The antifungal metabolite from the butanol extract was identified as iturin A by thin layer chromatography-bioautography. In addition, volatile organic compounds produced by DA12 were able to inhibit mycelial growth of various phytopathogenic fungi. The volatile compounds were identified as 2-heptanone, 5-methyl heptanone and 6-methyl heptanone by gas chromatography-mass spectrometry (GC-MS) analysis. These results indicate that the antagonistic activity of Bacillus amyloliquefaciens DA12 was attributable to iturin A and volatile heptanones, and the strain could be used as a biocontrol agent to reduce the development of Fusarium diseases and mycotoxin contamination of crops.

14.
Sensors (Basel) ; 17(10)2017 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-28974012

RESUMO

The purpose of this study is to use near-infrared reflectance (NIR) spectroscopy equipment to nondestructively and rapidly discriminate Fusarium-infected hulled barley. Both normal hulled barley and Fusarium-infected hulled barley were scanned by using a NIR spectrometer with a wavelength range of 1175 to 2170 nm. Multiple mathematical pretreatments were applied to the reflectance spectra obtained for Fusarium discrimination and the multivariate analysis method of partial least squares discriminant analysis (PLS-DA) was used for discriminant prediction. The PLS-DA prediction model developed by applying the second-order derivative pretreatment to the reflectance spectra obtained from the side of hulled barley without crease achieved 100% accuracy in discriminating the normal hulled barley and the Fusarium-infected hulled barley. These results demonstrated the feasibility of rapid discrimination of the Fusarium-infected hulled barley by combining multivariate analysis with the NIR spectroscopic technique, which is utilized as a nondestructive detection method.


Assuntos
Hordeum , Análise Discriminante , Fusarium , Análise dos Mínimos Quadrados , Espectroscopia de Luz Próxima ao Infravermelho
15.
mBio ; 8(1)2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-28246357

RESUMO

Quorum sensing (QS) controls cooperative activities in many Proteobacteria In some species, QS-dependent specific metabolism contributes to the stability of the cooperation. However, the mechanism by which QS and metabolic networks have coevolved to support stable public good cooperation and maintenance of the cooperative group remains unknown. Here we explored the underlying mechanisms of QS-controlled central metabolism in the evolutionary aspects of cooperation. In Burkholderia glumae, the QS-dependent glyoxylate cycle plays an important role in cooperativity. A bifunctional QS-dependent transcriptional regulator, QsmR, rewired central metabolism to utilize the glyoxylate cycle rather than the tricarboxylic acid cycle. Defects in the glyoxylate cycle caused metabolic imbalance and triggered high expression of the stress-responsive chaperonin GroEL. High-level expression of GroEL in glyoxylate cycle mutants interfered with the biosynthesis of a public resource, oxalate, by physically interrupting the oxalate biosynthetic enzyme ObcA. Under such destabilized cooperativity conditions, spontaneous mutations in the qsmR gene in glyoxylate cycle mutants occurred to relieve metabolic stresses, but these mutants lost QsmR-mediated pleiotropy. Overcoming the metabolic restrictions imposed on the population of cooperators among glyoxylate cycle mutants resulted in the occurrence and selection of spontaneous qsmR mutants despite the loss of other important functions. These results provide insight into how QS bacteria have evolved to maintain stable cooperation via QS-mediated metabolic coordination.IMPORTANCE We address how quorum sensing (QS) has coevolved with metabolic networks to maintain bacterial sociality. We found that QS-mediated metabolic rewiring is critical for sustainable bacterial cooperation in Burkholderia glumae The loss of the glyoxylate cycle triggered the expression of the stress-responsive molecular chaperonin GroEL. Excessive biosynthesis of GroEL physically hampered biosynthesis of a public good, oxalate. This is one good example of how molecular chaperones play critical roles in bacterial cooperation. In addition, we showed that metabolic restrictions in the glyoxylate cycle acted as a selection pressure on metabolic networks; there were spontaneous mutations in the qsmR gene to relieve such stresses. However, the presence of spontaneous qsmR mutants had tragic consequences for a cooperative population of B. glumae due to failure of qsmR-dependent activation of public good biosynthesis. These results provide a good example of a bacterial strategy for robust cooperation via QS-mediated metabolic rewiring.


Assuntos
Burkholderia/fisiologia , Regulação Bacteriana da Expressão Gênica , Glioxilatos/metabolismo , Redes e Vias Metabólicas/genética , Percepção de Quorum , Evolução Biológica , Burkholderia/crescimento & desenvolvimento , Burkholderia/metabolismo , Redes Reguladoras de Genes
16.
J Microbiol ; 54(12): 832-837, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27888464

RESUMO

To investigate contamination of ground red pepper with fungi and mycotoxin, we obtained 30 ground red pepper samples from 15 manufacturers in the main chili-pepper-producing areas in Korea. Fungal contamination was evaluated by spreading diluted samples on potato dextrose agar plates. The total fungi counts ranged from 0 to 7.3 × 103 CFU/g. In the samples, the genus Aspergillus had the highest incidence, while Paecilomyces was isolated most frequently. The next most frequent genera were Rhizopus, Penicillium, Cladosporium, and Alternaria. Within Aspergillus, A. ruber was predominant, followed by A. niger, A. amstelodami, A. ochraceus, A. terreus, A. versicolor, A. flavus, and A. fumigatus. The samples were analyzed for aflatoxins, ochratoxin A, and citrinin by ultra-perfomance liquid chromatography (UPLC) with a fluorescence detector. Ochratoxin A was detected from three samples at 1.03‒2.08 µg/kg, whereas no aflatoxins or citrinin were detected. To test the potential of fungal isolates to produce aflatoxin, we performed a PCR assay that screened for the norB-cypA gene for 64 Aspergillus isolates. As a result, a single 800-bp band was amplified from 10 A. flavus isolates, and one Aspergillus sp. isolate. UPLC analyses confirmed aflatoxin production by nine A. flavus isolates and one Aspergillus sp. isolate, which produced total aflatoxins at 146.88‒909.53 µg/kg. This indicates that continuous monitoring of ground red pepper for toxigenic fungi is necessary to minimize mycotoxin contamination.


Assuntos
Aflatoxinas/química , Capsicum/microbiologia , Microbiologia de Alimentos , Fungos/isolamento & purificação , Micobioma , Micotoxinas/química , Aflatoxinas/biossíntese , Alternaria/química , Alternaria/isolamento & purificação , Aspergillus/química , Aspergillus/isolamento & purificação , Capsicum/química , Cladosporium/química , Cladosporium/isolamento & purificação , Fungos/química , Fungos/metabolismo , Micotoxinas/isolamento & purificação , Ocratoxinas/química , Ocratoxinas/isolamento & purificação , Penicillium/química , Penicillium/isolamento & purificação , República da Coreia , Rhizopus/química , Rhizopus/isolamento & purificação
17.
Plant Pathol J ; 32(5): 407-413, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27721690

RESUMO

Fusarium graminearum species complex (FGSC) causes Fusarium head blight in small grain cereals. To date, four species (F. graminearum, F. asiaticum, F. boothii, and F. meridionale ) belonging to FGSC frequently occur in Korean cereals. In addition, we first reported the occurrence of additional species (F. vorosii ) within FGSC, which was isolated from barley, corn, and rice in Korea. Phylogenetic analysis of the Fusarium isolates of this group using combined multi-gene sequences confirmed species identification. Moreover, the macroconidia produced by these isolates were morphologically similar to those of the F. vorosii holotype. Chemical analysis indicated that the F. vorosii isolates produced various trichothecenes such as nivalenol and deoxynivalenol with their acetyl derivatives along with zearalenone. Pathogenicity tests demonstrated that all of the F. vorosii isolates examined were pathogenic on barley, corn, and rice with variation in aggressiveness. This study is the first report of F. vorosii in Korean cereals, their pathogenicity towards barley and corn, and their ability to produce trichothecenes and zearalenone.

18.
Proc Natl Acad Sci U S A ; 109(48): 19775-80, 2012 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-23150539

RESUMO

Acyl-homoserine lactone-mediated quorum sensing (QS) regulates diverse activities in many species of Proteobacteria. QS-controlled genes commonly code for production of secreted or excreted public goods. The acyl-homoserine lactones are synthesized by members of the LuxI signal synthase family and are detected by cognate members of the LuxR family of transcriptional regulators. QS affords a means of population density-dependent gene regulation. Control of public goods via QS provides a fitness benefit. Another potential role for QS is to anticipate overcrowding. As population density increases and stationary phase approaches, QS might induce functions important for existence in stationary phase. Here we provide evidence that in three related species of the genus Burkholderia QS allows individuals to anticipate and survive stationary-phase stress. Survival requires QS-dependent activation of cellular enzymes required for production of excreted oxalate, which serves to counteract ammonia-mediated alkaline toxicity during stationary phase. Our findings provide an example of QS serving as a means to anticipate stationary phase or life at the carrying capacity of a population by activating the expression of cytoplasmic enzymes, altering cellular metabolism, and producing a shared resource or public good, oxalate.


Assuntos
Burkholderia/fisiologia , Percepção de Quorum , Burkholderia/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Concentração de Íons de Hidrogênio , Mutação , Oxalatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA