Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34361548

RESUMO

Two-dimensional (2D) molybdenum disulfide (MoS2) is the most mature material in 2D material fields owing to its relatively high mobility and scalability. Such noticeable properties enable it to realize practical electronic and optoelectronic applications. However, contact engineering for large-area MoS2 films has not yet been established, although contact property is directly associated to the device performance. Herein, we introduce graphene-interlayered Ti contacts (graphene/Ti) into large-area MoS2 device arrays using a wet-transfer method. We achieve MoS2 devices with superior electrical and photoelectrical properties using graphene/Ti contacts, with a field-effect mobility of 18.3 cm2/V∙s, on/off current ratio of 3 × 107, responsivity of 850 A/W, and detectivity of 2 × 1012 Jones. This outstanding performance is attributable to a reduction in the Schottky barrier height of the resultant devices, which arises from the decreased work function of graphene induced by the charge transfer from Ti. Our research offers a direction toward large-scale electronic and optoelectronic applications based on 2D materials.

2.
ACS Appl Mater Interfaces ; 12(28): 31804-31809, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32559366

RESUMO

Reliable and controllable doping of transition metal dichalcogenides (TMDCs) is a mandatory requirement for practical large-scale electronic applications. However, most of the literature on the doping methodologies of TMDCs has focused on n-type doping and multilayer TMDC rather than a monolayer one enabling large-scale growth. Herein, we report substitutional fluorine doping of a chemical vapor deposition (CVD)-grown molybdenum disulfide (MoS2) monolayer film using a delicate SF6 plasma treatment. Our SF6-treated MoS2 monolayer shows a p-type doping effect with fluorine substitution. The doping concentration is controlled by the plasma treatment time (2-4.9 atom %) while maintaining the structural integrity of the MoS2 monolayer. Such reliable and tunable substitutional doping is attributed to preventing direct ion bombardment to the MoS2 monolayer by our gentle plasma treatment system. Finally, we fabricated MoS2 homojunction flexible inverter device arrays based on the pristine and SF6-treated MoS2 monolayer. A clear switching behavior is observed, and the voltage gain is approximately 8 at an applied VDD of 2 V, which is comparable to that of CVD-grown MoS2-based inverter devices reported previously. Obtained voltage gain is also stable even after 500 bending cycles at an applied strain of 0.5%.

3.
Sci Rep ; 10(1): 7074, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341425

RESUMO

Graphene quantum dots (GQDs) are an allotrope of carbon with a planar surface amenable to functionalization and nanoscale dimensions that confer photoluminescence. Collectively, these properties render GQDs an advantageous platform for nanobiotechnology applications, including optical biosensing and delivery. Towards this end, noncovalent functionalization offers a route to reversibly modify and preserve the pristine GQD substrate, however, a clear paradigm has yet to be realized. Herein, we demonstrate the feasibility of noncovalent polymer adsorption to GQD surfaces, with a specific focus on single-stranded DNA (ssDNA). We study how GQD oxidation level affects the propensity for polymer adsorption by synthesizing and characterizing four types of GQD substrates ranging ~60-fold in oxidation level, then investigating noncovalent polymer association to these substrates. Adsorption of ssDNA quenches intrinsic GQD fluorescence by 31.5% for low-oxidation GQDs and enables aqueous dispersion of otherwise insoluble no-oxidation GQDs. ssDNA-GQD complexation is confirmed by atomic force microscopy, by inducing ssDNA desorption, and with molecular dynamics simulations. ssDNA is determined to adsorb strongly to no-oxidation GQDs, weakly to low-oxidation GQDs, and not at all for heavily oxidized GQDs. Finally, we reveal the generality of the adsorption platform and assess how the GQD system is tunable by modifying polymer sequence and type.


Assuntos
DNA de Cadeia Simples/química , Grafite/química , Simulação de Dinâmica Molecular , Pontos Quânticos/química , Fluorescência
4.
ACS Appl Mater Interfaces ; 12(3): 4129-4134, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31880145

RESUMO

Contact engineering for two-dimensional (2D) transition metal dichalcogenides (TMDCs) is crucial for realizing high-performance 2D TMDC devices, and most studies on contact properties of 2D TMDCs have mainly focused on Fermi level unpinning. Here, we investigated electrical and photoelectrical properties of chemical vapor deposition (CVD)-grown molybdenum disulfide (MoS2) monolayer devices depending on metal contacts, Ti/Pt, Ti/Au, Ti, and Ag, and particularly demonstrated the essential role of defects in MoS2 in contact properties. Remarkably, MoS2 devices with Ag contacts show a field-effect mobility of 12.2 cm2 V-1 s-1, an on/off current ratio of 7 × 107, and a photoresponsivity of 1020 A W-1, which are outstanding compared to similar devices with other metal contacts. These improvements are attributed to a reduced Schottky barrier height, thanks to the small work function of Ag and Ag-MoS2 orbital hybridization at the interface, which facilitates efficient charge transfer between MoS2 and Ag. Interestingly, X-ray photoelectron spectroscopic analysis reveals that Ag2S was formed in our defect-containing CVD-grown MoS2 monolayer, but such orbital hybridization is not observed in a nearly defect-free exfoliated MoS2. This distinction shows that defects existing in MoS2 enable Ag to effectively couple to MoS2 and correspondingly enhance multiple electrical and photoelectrical properties.

5.
ACS Appl Mater Interfaces ; 11(50): 47247-47252, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31746181

RESUMO

The modulation of the electrical properties of graphene and its device configurations for low-power consumption are important in developing graphene-based logic electronics. Here, we demonstrate the change in the charge transport in graphene from ambipolar to unipolar using surface charge transfer doping of the polymer electrolyte. Unipolar graphene field-effect transistors (GFETs) were obtained by the surface treatment of poly(acrylic acid) (PAA) for p-type and poly(ethyleneimine) (PEI) for n-type as polymer-electrolyte gates. In addition, lithium perchlorate (LiClO4) in a polymer matrix can be used for the low-gate voltage operation of GFETs (less than ±3 V) because of its high gating efficiency. Using polymer-electrolyte-gated GFETs, complementary graphene inverters were fabricated with a voltage swing of 57% and maximum voltage gain (Vgain) of 1.1 at a low supply voltage (VDD = 1 V). This is expected to facilitate the development of graphene-based logic devices with low-cost, low-power, and flexible electronics.

6.
Adv Mater ; 31(2): e1804422, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30411825

RESUMO

2D transition metal dichalcogenides (TMDCs) have emerged as promising candidates for post-silicon nanoelectronics owing to their unique and outstanding semiconducting properties. However, contact engineering for these materials to create high-performance devices while adapting for large-area fabrication is still in its nascent stages. In this study, graphene/Ag contacts are introduced into MoS2 devices, for which a graphene film synthesized by chemical vapor deposition (CVD) is inserted between a CVD-grown MoS2 film and a Ag electrode as an interfacial layer. The MoS2 field-effect transistors with graphene/Ag contacts show improved electrical and photoelectrical properties, achieving a field-effect mobility of 35 cm2 V-1 s-1 , an on/off current ratio of 4 × 108 , and a photoresponsivity of 2160 A W-1 , compared to those of devices with conventional Ti/Au contacts. These improvements are attributed to the low work function of Ag and the tunability of graphene Fermi level; the n-doping of Ag in graphene decreases its Fermi level, thereby reducing the Schottky barrier height and contact resistance between the MoS2 and electrodes. This demonstration of contact interface engineering with CVD-grown MoS2 and graphene is a key step toward the practical application of atomically thin TMDC-based devices with low-resistance contacts for high-performance large-area electronics and optoelectronics.

7.
ChemSusChem ; 12(4): 824-829, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30569512

RESUMO

Current lithium-ion batteries have a low theoretical capacity that is insufficient for use in emerging electric vehicles and energy-storage systems. The development of lithium-sulfur batteries utilizing Li2 S cathodes would be a promising option to overcome the capacity limitation. In this work, new three-dimensional (3D) honeycomb-like N-doped carbon nanowebs (HCNs) have been synthesized through a facile aqueous solution route for use as a cathode material in lithium-sulfur batteries. The Li2 S@HCNs cathode delivers a high discharge capacity of approximately 815 mAh g-1 after 65 cycles at 0.1 C, along with a superior rate capacity of approximately 568 mAh g-1 even at 2 C. The outstanding electrochemical rate performance is ascribed to their unique 3D honeycomb-like nanoweb structure, consisting of nanowires derived from polypyrrole. These properties greatly enhance the electrochemical reaction kinetics by providing efficient electron pathways and hollow channels for electrolyte transport. Nitrogen doping in the carbon nanowebs also considerably improves the chemisorption properties by tuning affinity between sulfur and oxygen functional groups on the carbon framework. The simple synthesis strategy and the resulting unique electrode structure could present a new avenue in nanostructure research for high-performance lithium-sulfur batteries.

8.
Nano Lett ; 18(9): 5506-5513, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30080971

RESUMO

Graphene-oxide (GO) membranes with notable ionic-sieving properties have attracted significant attention for many applications. However, the swelling and unstable nanostructure of GO laminates in water results in enlarged interlayer spacing and a low permeation cut-off, limiting their applicability for water purification and desalination. Herein, we propose novel nitrogen-doped graphene (NG) membranes for use in tunable ion sieving that are made via facile fabrication by a time-dependent N-doping technique. Doping reaction time associated variation in atomic content and bonding configurations strongly contributed to the nanostructure of NG laminates by yielding narrower interlayer spacing and a more-polarized surface than GO. These nanostructural features subsequently allowed ion transport through the combined mechanisms of size exclusion and electrostatic interaction. The stacked NG membranes provided size-dependent permeability for hydrated ions and improved ion selectivity by 1-3 orders of magnitude in comparison to that of a GO membrane. For ions small enough to move through the interlayer spacing, the ion permeation is determined by electrostatic properties of NG membranes with the type of N configuration, especially polarized pyridinic N. Due to these properties, the NG membrane functioned as an unconventionally selective graphene-based membrane with better ion sieving for water purification.

9.
Chemosphere ; 207: 581-589, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29843035

RESUMO

A novel polysulfone (PSf) nanocomposite ultrafiltration (UF) membrane using sulfonated graphene oxide (SGO) as additives was fabricated and investigated. SGO nanoparticles were chemically synthesized from graphene oxide (GO) by using sulfuric acid (H2SO4) and were confirmed by Raman and Fourier transform infrared (FTIR) spectroscopy. The morphology of prepared membranes was characterized by scanning electron microscopy (SEM), energy dispersive x-ray (EDX) and atomic force microscopy (AFM). Results showed that adding small amount (less than 0.3 wt%) of SGO improved wettability, porosity and mean pore size of PSf/SGO membranes compared to the pristine PSf membrane and significantly enhanced the water flux of SGO incorporated PSf membranes. In UF performance, the nanocomposite membrane prepared by adding 1.5 w/w% SGO of PSf (designated as M1.5) showed the highest water flux result, which was 125% higher than the control PSf membrane (no SGO addition). Interestingly, there was no trade-off between water flux and bovine serum albumin (BSA) rejection, i.e more than 98% BSA rejection. The addition of SGO hydrophilic additives also showed better results in long-term BSA separation performance. The enhancement of hybrid membrane's properties was attributed to the hydrophilicity of sulfonic acid group (SO3H) on the surface of SGO additive. This study suggested that the SGO nanoparticle is a promising candidate to modify the PSf UF membranes.


Assuntos
Grafite/química , Nanocompostos/química , Óxidos/química , Polímeros/química , Sulfonas/química , Ultrafiltração/métodos
10.
Nano Converg ; 5(1): 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29577013

RESUMO

There has been growing interest in developing nanoelectronic devices based on graphene because of its superior electrical properties. In particular, patterning graphene into a nanoribbon can open a bandgap that can be tuned by changing the ribbon width, imparting semiconducting properties. In this study, we report the effect of ribbon width on electrical transport properties of graphene nanoribbons (GNRs). Monolayer graphene sheets and Si nanowires (NWs) were prepared by chemical vapor deposition and a combination of nanosphere lithography and metal-assisted electroless etching from a Si wafer, respectively. Back-gated GNR field-effect transistors were fabricated on a heavily p-doped Si substrate coated with a 300 nm-thick SiO2 layer, by O2 reactive ion etching of graphene sheets using etch masks based on Si NWs aligned on the graphene between the two electrodes by a dielectrophoresis method. This resulted in GNRs with various widths in a highly controllable manner, where the on/off current ratio was inversely proportional to ribbon width. The field-effect mobility decreased with decreasing GNR widths due to carrier scattering at the GNR edges. These results demonstrate the formation of a bandgap in GNRs due to enhanced carrier confinement in the transverse direction and edge effects when the GNR width is reduced.

11.
Nano Lett ; 18(2): 734-739, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29347815

RESUMO

Understanding the mutual interaction between electronic excitations and lattice vibrations is key for understanding electronic transport and optoelectronic phenomena. Dynamic manipulation of such interaction is elusive because it requires varying the material composition on the atomic level. In turn, recent studies on topological insulators (TIs) have revealed the coexistence of a strong phonon resonance and topologically protected Dirac plasmon, both in the terahertz (THz) frequency range. Here, using these intrinsic characteristics of TIs, we demonstrate a new methodology for controlling electron-phonon interaction by lithographically engineered Dirac surface plasmons in the Bi2Se3 TI. Through a series of time-domain and time-resolved ultrafast THz measurements, we show that, when the Dirac plasmon energy is less than the TI phonon energy, the electron-phonon coupling is trivial, exhibiting phonon broadening associated with Landau damping. In contrast, when the Dirac plasmon energy exceeds that of the phonon resonance, we observe suppressed electron-phonon interaction leading to unexpected phonon stiffening. Time-dependent analysis of the Dirac plasmon behavior, phonon broadening, and phonon stiffening reveals a transition between the distinct dynamics corresponding to the two regimes as the Dirac plasmon resonance moves across the TI phonon resonance, which demonstrates the capability of Dirac plasmon control. Our results suggest that the engineering of Dirac plasmons provides a new alternative for controlling the dynamic interaction between Dirac carriers and phonons.

12.
Nanoscale ; 9(27): 9333-9339, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28463375

RESUMO

Chemical doping of transition metal dichalcogenides (TMDCs) has drawn significant interest because of its applicability to the modification of electrical and optical properties of TMDCs. This is of fundamental and technological importance for high-efficiency electronic and optoelectronic devices. Here, we present a simple and facile route to reversible and controllable modulation of the electrical and optical properties of WS2 and MoS2via hydrazine doping and sulfur annealing. Hydrazine treatment of WS2 improves the field-effect mobilities, on/off current ratios, and photoresponsivities of the devices. This is due to the surface charge transfer doping of WS2 and the sulfur vacancies formed by its reduction, which result in an n-type doping effect. The changes in the electrical and optical properties are fully recovered when the WS2 is annealed in an atmosphere of sulfur. This method for reversible modulation can be applied to other transition metal disulfides including MoS2, which may enable the fabrication of two-dimensional electronic and optoelectronic devices with tunable properties and improved performance.

13.
Small ; 12(14): 1859-65, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26856958

RESUMO

Surface-functionalized carbon nanotubes (CNTs) are introduced into lithium-doped ZnO thin-film transistors (TFTs) as an alternative to the conventional incorporation of an expensive element, indium. The crucial role of surface functionalization of CNTs is clarified with the demonstration of indium-free ZnO-based TFTs with a field-effect mobility of 28.6 cm(2) V(-1) s(-1) and an on/off current ratio of 9 × 10(6) for low-cost, high-performance electronics.

14.
Sci Rep ; 5: 17955, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658923

RESUMO

There is significant interest in synthesizing large-area graphene films at low temperatures by chemical vapor deposition (CVD) for nanoelectronic and flexible device applications. However, to date, low-temperature CVD methods have suffered from lower surface coverage because micro-sized graphene flakes are produced. Here, we demonstrate a modified CVD technique for the production of large-area, continuous monolayer graphene films from benzene on Cu at 100-300 °C at ambient pressure. In this method, we extended the graphene growth step in the absence of residual oxidizing species by introducing pumping and purging cycles prior to growth. This led to continuous monolayer graphene films with full surface coverage and excellent quality, which were comparable to those achieved with high-temperature CVD; for example, the surface coverage, transmittance, and carrier mobilities of the graphene grown at 300 °C were 100%, 97.6%, and 1,900-2,500 cm(2) V(-1) s(-1), respectively. In addition, the growth temperature was substantially reduced to as low as 100 °C, which is the lowest temperature reported to date for pristine graphene produced by CVD. Our modified CVD method is expected to allow the direct growth of graphene in device manufacturing processes for practical applications while keeping underlying devices intact.

15.
Adv Mater ; 27(43): 6945-52, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26439187

RESUMO

A lithographically aligned palladium nano-ribbon (Pd-NRB) array with gaps of less than 40 nm is fabricated on a poly(ethylene terephthalate) substrate using the direct metal transfer method. The 200 µm Pd-NRB hydrogen gas sensor exhibits an unprecedented sensitivity of 10(9) % after bending treatment, along with fast sensing behavior (80% response time of 3.6 s and 80% recovery time of 8.7 s) at room temperature.

16.
ACS Macro Lett ; 4(3): 322-326, 2015 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35596344

RESUMO

Nonvolatile resistive memory devices based on a new low bandgap donor-acceptor (D-A) conjugated polymer, poly((E)-6,6'-bis(2,3-dihydrothieno[3,4-b][1,4]dioxine-5-yl)-1,1'-bis(2-octyldodecyl)-[3,3'-biindolinyi-dene]-2,2'-dione) (PIDED), which are fabricated and operated in ambient air, are reported. The D-A conjugated polymer is synthesized from 2,3-dihydrothieno[3,4-b][1,4]dioxine and isoindigo as an electron donor and an electron acceptor, respectively, using CH-arylation polymerization. The devices show nonvolatile, unipolar resistive switching behaviors with a high on/off current ratio (∼104), excellent endurance cycles (>200 cycles), and a long retention time (>104 s) in ambient air. These properties remain stable in ambient air over one year, demonstrating that the device performance is significantly unaffected by exposure to air as the isoindigo has strong electron-withdrawing character and the PIDED exhibits a high degree of crystallinity. This study may pave the way for use of practical nonvolatile organic memory devices operating in ambient air.

17.
ACS Macro Lett ; 4(7): 769-773, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35596474

RESUMO

In the past decade, hybrid materials for highly stretchable, conductive electrodes have received tremendous attention in the fields of emerging wearable electronic, optoelectronic, and sensing devices. Here, we present a previously unrecognized aqueous route to producing stretchable conductors composed of silver nanoparticles (AgNPs) and single-walled carbon nanotubes (SWNTs) embedded in a polyurethane (PU) matrix, in contrast to ones dispersed in toxic organic solvents reported to date. The intact chemical interaction between one-dimensional SWNTs, for endowing the capability of establishing conductive pathways even in stretching conditions, and AgNPs, for enabling high conductivity of the composites, is achieved in an aqueous medium with an anionic polyelectrolyte, poly(acrylic acid), that undergoes pH-dependent conformational evolution. With this aqueous approach, we demonstrate that AgNP-SWNT-PU composites supported on PDMS substrates have the conductivities of 620 and 120 S cm-1 in unstrained and 90% elongated conditions, respectively, and display repeatable reversibility at a strain of 60%.

18.
Opt Express ; 22 Suppl 4: A1040-50, 2014 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-24978067

RESUMO

Pristine graphene and a graphene interlayer inserted between indium tin oxide (ITO) and p-GaN have been analyzed and compared with ITO, which is a typical current spreading layer in lateral GaN LEDs. Beyond a certain current injection, the pristine graphene current spreading layer (CSL) malfunctioned due to Joule heat that originated from the high sheet resistance and low work function of the CSL. However, by combining the graphene and the ITO to improve the sheet resistance, it was found to be possible to solve the malfunctioning phenomenon. Moreover, the light output power of an LED with a graphene interlayer was stronger than that of an LED using ITO or graphene CSL. We were able to identify that the improvement originated from the enhanced current spreading by inspecting the contact and conducting the simulation.

19.
Sci Rep ; 4: 4886, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24811431

RESUMO

Defects of graphene are the most important concern for the successful applications of graphene since they affect device performance significantly. However, once the graphene is integrated in the device structures, the quality of graphene and surrounding environment could only be assessed using indirect information such as hysteresis, mobility and drive current. Here we develop a discharge current analysis method to measure the quality of graphene integrated in a field effect transistor structure by analyzing the discharge current and examine its validity using various device structures. The density of charging sites affecting the performance of graphene field effect transistor obtained using the discharge current analysis method was on the order of 10(14)/cm(2), which closely correlates with the intensity ratio of the D to G bands in Raman spectroscopy. The graphene FETs fabricated on poly(ethylene naphthalate) (PEN) are found to have a lower density of charging sites than those on SiO2/Si substrate, mainly due to reduced interfacial interaction between the graphene and the PEN. This method can be an indispensable means to improve the stability of devices using a graphene as it provides an accurate and quantitative way to define the quality of graphene after the device fabrication.

20.
Adv Mater ; 25(34): 4723-8, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-23798365

RESUMO

Sub-10 nm Graphene Nanoribbon Arrays are fabricated over large areas by etching CVD-grown graphene. A mask is used made by the directed self-assembly of a cylindrical PS-b-PDMS block copolymer under solvent annealing guided by a removable template. The optimized solvent annealing process, surface-modified removable polymeric templates, and high Flory-Huggins interaction parameters of the block copolymer enable a highly aligned array of nanoribbons with low line edge roughness to be formed. This leads to a higher on/off ratio and stronger temperature dependence of the current for nanoribbon FETs, and a photocurrent which is 30 times larger compared to unpatterned graphene.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Transistores Eletrônicos , Dimetilpolisiloxanos/química , Nylons/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...