Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(44): e2303432, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37394708

RESUMO

In the quest for materials sustainability for grid-scale applications, graphene quantum dot (GQD), prepared via eco-efficient processes, is one of the promising graphitic-organic matters that have the potential to provide greener solutions for replacing metal-based battery electrodes. However, the utilization of GQDs as electroactive materials has been limited; their redox behaviors associated with the electronic bandgap property from the sp2 carbon subdomains, surrounded by functional groups, are yet to be understood. Here, the experimental realization of a subdomained GQD-based anode with stable cyclability over 1000 cycles, combined with theoretical calculations, enables a better understanding of the decisive impact of controlled redox site distributions on battery performance. The GQDs are further employed in cathode as a platform for full utilization of inherent electrochemical activity of bio-inspired redox-active organic motifs, phenoxazine. Using the GQD-derived anode and cathode, an all-GQD battery achieves a high energy density of 290 Wh kgcathode -1 (160 Wh kgcathode+anode -1 ), demonstrating an effective way to improve reaction reversibility and energy density of sustainable, metal-free batteries.

2.
ACS Nano ; 16(6): 9762-9771, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35687870

RESUMO

Rapid charging capability is a requisite feature of lithium-ion batteries (LIBs). To overcome the capacity degradation from a steep Li-ion concentration gradient during the fast reaction, electrodes with tailored transport kinetics have been explored by managing the geometries. However, the traditional electrode fabrication process has great challenges in precisely controlling and implementing the desired pore networks and configuration of electrode materials. Herein, we demonstrate a density-graded composite electrode that arises from a three-dimensional current collector in which the porosity gradually decreases to 53.8% along the depth direction. The density-graded electrode effectively reduces energy loss at high charging rates by mitigating polarization. This electrode shows an outstanding capacity of 94.2 mAh g-1 at a fast current density of 59.7 C (20 A g-1), which is much higher than that of an electrode with a nearly constant density gradient (38.0 mAh g-1). Through these in-depth studies on the pore networks and their transport kinetics, we describe the design principle of rational electrode geometries for ultrafast charging LIBs.

3.
Foods ; 11(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35159566

RESUMO

Pesticides which are diluted and sprayed according to the pre-harvest interval (PHI) are generally decomposed and lost through various factors and pathways, and the leftover pesticides are known as residual pesticides. This study aims to determine the dissipation of residual amounts of dinotefuran, fluazinam, indoxacarb, and thiacloprid in persimmon and the changes in the concentration of various processing products. Pesticide spraying is performed in accordance with the GAP (good agricultue practice) of Korea, and the processed products are manufactured using a conventional method after removing the skin of persimmons. The modified QuEchERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method and an optimized method using LC-MS/MS (liquid chromatography mass spectrometry) is implemented to analyze the residual pesticides. The linearity, recovery, and LOQ (limit of quantitation) are presented to verify the analysis method. The amount of residual pesticides tested decreases significantly in a time-dependent manner, regardless of the minimal dilution effect present due to growth. The residual concentration does not vary significantly during the processing stage despite the removal of the systemic pesticides, dinotefuran and thiacloprid. The residues of non-systemic pesticides, fluazinam and indoxacarb, are typically removed by the peeling removal and processing methods. The reduction factor of dinotefuran, whose residual concentration is increased, is less than 1, and the absolute amount of pesticides is decreased through processing. The results of this study can be used as the scientific basis data to ensure the safety of residual pesticides in processed products in the future.

4.
Adv Sci (Weinh) ; 7(11): 1903708, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537413

RESUMO

The realization of high-contrast modulation in optically transparent media is of great significance for emerging mechano-responsive smart windows. However, no study has provided fundamental strategies for maximizing light scattering during mechanical deformations. Here, a new type of 3D nanocomposite film consisting of an ultrathin (≈60 nm) Al2O3 nanoshell inserted between the elastomers in a periodic 3D nanonetwork is proposed. Regardless of the stretching direction, numerous light-scattering nanogaps (corresponding to the porosity of up to ≈37.4 vol%) form at the interfaces of Al2O3 and the elastomers under stretching. This results in the gradual modulation of transmission from ≈90% to 16% at visible wavelengths and does not degrade with repeated stretching/releasing over more than 10 000 cycles. The underlying physics is precisely predicted by finite element analysis of the unit cells. As a proof of concept, a mobile-app-enabled smart window device for Internet of Things applications is realized using the proposed 3D nanocomposite with successful expansion to the 3 × 3 in. scale.

5.
Proc Natl Acad Sci U S A ; 117(11): 5680-5685, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32132207

RESUMO

Electrocatalytic CO2 reduction is a promising way to provide renewable energy from gaseous CO2 The development of nanostructures improves energy efficiency and selectivity for value-added chemicals, but complex nanostructures limit the CO2 conversion rates due to poor mass transport during vigorous electrolysis. Herein, we propose a three-dimensional (3D) hierarchically porous Au comprising interconnected macroporous channels (200-300 nm) and nanopores (∼10 nm) fabricated via proximity-field nanopatterning. The interconnected macropores and nanopores enable efficient mass transport and large active areas, respectively. The roles of each pore network are investigated using reliable 3D nanostructures possessing controlled pore distribution and size. The hierarchical nanostructured electrodes show a high CO selectivity of 85.8% at a low overpotential of 0.264 V and efficient mass activity that is maximum 3.96 times higher than that of dealloyed nanoporous Au. Hence, the systematic model study shows the proposed hierarchical nanostructures have important value in increasing the efficiency of expensive Au.

6.
J Med Chem ; 58(1): 183-96, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25075558

RESUMO

We developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure-activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16 and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. A 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.


Assuntos
MAP Quinase Quinase Quinases/química , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Animais , Área Sob a Curva , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Desenho de Fármacos , Descoberta de Drogas , Quinases do Centro Germinativo , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Masculino , Camundongos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteoma/antagonistas & inibidores , Proteoma/química , Proteoma/metabolismo , Piridinas/química , Piridinas/farmacocinética , Piridinas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...