Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 312(Pt 1): 137151, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36368531

RESUMO

Pomegranate trees are tropical and subtropical shrubs with nutritional benefits and pharmaceutical and therapeutic uses. Antioxidative systems protect the structure and function of cellular membranes. This study demonstrated the connection between oxidative stress generated by excess nanoparticles ZnO (ZnO-NPs) accumulation in pomegranate calli and the involvement of thiol groups and volatile and semi-volatile compounds in alleviating this stress. The effect of the non-enzymatic antioxidant system was studied using callus treated with three levels of ZnO-NPs or bulk particles (ZnO-BPs). With rising ZnO levels in the media, callus growth was gradually decreased by ZnO in both forms (NPs and BPs). Malondialdehyde (MDA) measurements revealed that different concentrations of both forms promoted lipid peroxidation. The supply of both forms had a considerable stimulatory influence on the cysteine (Cys) content in calli. Raised ZnO-NP concentrations increased glutathione (GSH) and non-protein thiols (NPTs) content in calli, but higher ZnO-BP concentrations lowered their content. Conversely, ZnO-NP levels reduced the protein thiols (PTs) content in calli, but ZnO-BP concentrations increased their content. GC-MS analysis was employed to investigate the volatile and semi-volatile chemical profiles within calli following exposure to 0 and 150 µg mL-1 of ZnO in both forms. GC-MS analysis detected 77, 67, and 83 compounds in ZnO-treated calli, of which 14, 16, and 20 with a similarity value greater than 70%, based on a NIST library, were recognized as metabolites for ZnO untreated and NPs- and BPs-treated calli, respectively. Six substances, including five alkanes and one morphinan, showed similarities in metabolite composition between control and NPs- or BPs-treated calli. ZnO-NPs-treated calli contained two alkane compounds only similar to the control, but ZnO-BPs-treated calli had six metabolites, including four alkanes, one carboxylic acid, and one ester. However, eight alkanes were similar within the callus treated with NPs and BPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Punica granatum , Óxido de Zinco , Óxido de Zinco/química , Compostos de Sulfidrila , Nanopartículas Metálicas/química , Estresse Oxidativo , Nanopartículas/química , Antioxidantes/metabolismo , Glutationa/metabolismo , Alcanos
2.
Plant Physiol Biochem ; 182: 216-226, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35526419

RESUMO

Benzoic acid (BA) represents vital roles in plant activity and response to diverse unfavorable conditions. However, its participation in mitigating excess boron (EB) stress in plants is elusive. Herein, we have examined the impacts of BA (1 µM) in controlling boron (B) uptake in tomato (Solanum lycopersicum L.) calli exposed to various EB levels (0, 1, 2, and 3 mM). The free, semi-bound, and bound B forms were stimulated by EB, while these forms were reduced in B-stressed calli by BA supplementation (40.37%, 36.08%, and 66.91%, respectively, less than 3 mM B-stressed calli alone). EB caused a reduction in the uptake of potassium (K+), calcium (Ca2+), magnesium (Mg2+), and nitrite (NO2-) while increasing the concentration of phosphorus (P), nitrate (NO3-), sulfur (S), and sulfate (SO42-) in B-stressed calli. BA application induced the uptake of K+, Ca2+, Mg2+, NO3-, S, and SO42-; however, it reduced P and NO2- concentrations in B-stressed calli. EB reduced nitrate reductase activity (NR), while BA application did not alleviate this reduction. EB treatments significantly, in most cases, increased sulfite oxidase (SO) activity. Supplementation of BA along with EB further enhanced SO activity. Cell wall components (cellulose, hemicellulose, and pectin) were decreased under EB treatments but considerably increased in B-stressed calli by BA application. Fourier Transform Infrared Spectrometer (FT-IR) output showed that EB treatments with/without BA led to alterations in cell wall functional groups of calli. Our findings indicated that BA application enabled tomato callus to counteract the harmful effect of EB, leading to improved callus growth.


Assuntos
Solanum lycopersicum , Ácido Benzoico/metabolismo , Boro/metabolismo , Boro/farmacologia , Solanum lycopersicum/metabolismo , Dióxido de Nitrogênio/metabolismo , Plantas , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Sci Rep ; 10(1): 19722, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184350

RESUMO

The structure and function of cellular membranes were sustained by redox-enzymes. We studied the interaction between the oxidative stress caused by excessive accumulation of ZnO-nanoparticles (ZnO-NPs) in plants and the role of redox-enzymes that can alleviate this stress. The crude callus extract from pomegranate, which was treated with 0, 10, and 150 µg mL-1 ZnO-NPs or bulk particles (ZnO-BPs), was applied to study the activity and kinetics of redox-enzymes. The elevated ZnO-NPs, enhanced the lipoxygenase and polyphenol oxidase activity, while the ZnO-BPs did not modify them. The activities of superoxide dismutase, catalase, and phenylalanine ammonia-lyase were induced under ZnO-NPs or BPs treatments, whilst the opposite trend of peroxidase was observed. Ascorbate peroxidase activity increased under ZnO-NPs treatments but decreased under ZnO-BPs. The kinetics activity of enzymes showed changes under different levels of NPs and BPs. Additionally, NPs or BPs treatments reduced the uptake of copper, iron, magnesium, but increased zinc accumulation in callus tissues. Meanwhile, these treatments enhanced the accumulation of manganese ions but did not affect the accumulation of potassium and phosphorous in ZnO-NPs or BPs-stressed calli. Collectively, these results gave a quantitative evaluation of the competition of zinc and other minerals on the carriers, and in addition, they provided a basis for how to control ZnO-NPs or BPs toxicity via redox-enzymes.

4.
J Plant Res ; 131(6): 1015-1028, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29357048

RESUMO

Boron (B) toxicity often limits crop yield and the quality of production in agricultural areas. Here, we investigated the effects of calcium (Ca), silicon (Si) and salicylic acid (SA) on development of B toxicity, B allocation in canola (Brassica napus cultivar Sarw 4) and its role in non-enzymatic antioxidants in relation to yield of this cultivar under B toxicity. Canola seedlings were subjected to four B levels induced by boric acid in the absence or presence of Ca, Si and SA. The results showed that Ca, Si and SA addition ameliorated the inhibition in canola growth, water content (WC), and improved siliqua number, siliqua weight and seed index. The B content in shoots and roots and total B accumulation in the whole plant were increased in control plants under B-toxicity-stress, and these parameters were significantly decreased by addition of Ca, Si and SA. The shoot ascorbate pool (ascorbate, AsA, and dehydroascorbate, DHA), α-tocopherol and phenolics (free and bound) were increased under B toxicity, and were significantly decreased in most cases by addition of Ca, Si and SA, except α-tocopherol, which increased at low B levels (0, 25 and 50 mg kg soil-1). The glutathione content did not obviously change by B stress, while added Ca, Si and SA inhibited its accumulation under B stress. In addition, B toxicity reduced the shoot flavonoids content; however, this reduction was not alleviated by the use of Ca, Si and SA treatments. It could be concluded that growth and yield of canola plants grown under high B concentration improved after external application of Ca, Si or SA.


Assuntos
Boro/toxicidade , Brassica napus/efeitos dos fármacos , Cálcio/uso terapêutico , Ácido Salicílico/uso terapêutico , Silício/uso terapêutico , Estresse Fisiológico/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Glutationa/metabolismo , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Vitamina E/metabolismo
5.
Phytochemistry ; 94: 135-41, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23787153

RESUMO

Treatment of plants with thiamine (Vitamin B1) has before been shown to activate plant defence against microorganisms. Here, we have studied the effects of thiamine treatments of plants on aphid reproduction and behaviour. The work was mainly carried out with bird cherry-oat aphid (Rhopalosiphum padi L.) on barley (Hordeum vulgare L.). Aphid population growth and aphid acceptance on plants grown from seeds soaked in a 150µM thiamine solution were reduced to ca. 60% of that on control plants. R. padi life span and the total number of offspring were reduced on barley plants treated with thiamine. Healthy aphids and aphids infected with the R. padi virus were similarly affected. Spraying or addition of thiamine at 150µM to nutrient solutions likewise resulted in reduced aphid population growth to ca. 60%, as did plant exposure to thiamine odour at 4mM. Thiamine treatments resulted in reduced aphid population growth also when tested with grain aphid (Sitobion avenae F.) on barley and pea aphid (Acyrthosiphon pisum H.) on pea (Pisum sativum L.). There was no direct effect of thiamine on aphid reproduction or thiamine odour on aphid behaviour, as evaluated using artificial diets and by olfactometer tests, respectively. Two gene sequences regulated by salicylic acid showed higher transcript abundance and one gene sequence regulated by methyl jasmonate showed lower transcript abundance in thiamine-treated plants but not in control plants after aphid infestation. These results suggest that the aphid antibiosis and antixenosis effects may be related to priming of defence, but more studies are needed to explain the effects against aphids.


Assuntos
Afídeos/crescimento & desenvolvimento , Hordeum/efeitos dos fármacos , Pisum sativum/efeitos dos fármacos , Tiamina/farmacologia , Animais , Afídeos/fisiologia , Afídeos/virologia , Resistência à Doença/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Hordeum/genética , Hordeum/parasitologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Pisum sativum/parasitologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/parasitologia , Complexo Vitamínico B/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...