Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 51(46): 17609-17619, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36331416

RESUMO

The evolution of high virulence bacterial strains has necessitated the development of novel therapeutic agents to treat resistant infections. Metal-based therapeutics represent a promising avenue for advancement, given their structural variability and unique modes of action relative to classical organic molecules. One strategy that has seen marked success is the incorporation of ferrocene into the framework of established antibacterial agents, while ruthenium-based complexes have also shown promise as bioactive compounds. This work focused on the preparation of novel ruthenium(II)-arene complexes containing Schiff base ligands with an attached ferrocene, and evaluation of their antibacterial activity. Structure-activity relationships identified the importance of having a phenyl group between the Schiff base imine and the appended ferrocene. This complex, C2, showed prominent activity against several clinically relevant bacterial strains, including a minimum inhibitory concentration of 16 µg mL-1 for methicillin-resistant Staphylococcus aureus (MSRA). Overall, the results of this study represent a promising new lead for future development of novel antibacterial agents.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Rutênio , Rutênio/farmacologia , Rutênio/química , Metalocenos/farmacologia , Bases de Schiff/farmacologia , Bases de Schiff/química , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/química
2.
J Org Chem ; 87(15): 9619-9634, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35862509

RESUMO

Treatment of ß-hydroxy-α-p-methoxyphenoxy carboxylic acids derived from the asymmetric glycolate aldol addition reaction with p-nitrobenzenesulfonyl chloride yielded divergent results depending on the nature of the ß-substituent of the carboxylic acid. Substrates bearing either alkyl substituents (R = -n-butyl, -n-octyl, -benzyl, isopropyl, -tert-butyl) or aryl systems bearing electron-withdrawing substituents (R = -p-C6H4Cl, -p-C6H4Br, -p-C6H4NO2) yielded ß-lactones. In contrast, α-p-methoxyphenoxy-ß-hydroxycarboxylic acids bearing electron-donating aryl groups or the sterically demanding 2-naphthyl group formed (Z)-alkenes.


Assuntos
Hidroxiácidos , Lactonas , Alcenos , Lactonas/química , Estereoisomerismo
3.
Inorg Chem ; 61(6): 2733-2744, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35102739

RESUMO

Alzheimer's disease (AD) is a devastating neurological disorder for which soluble oligomers of the peptide amyloid-ß (Aß) are now recognized as the neurotoxic species. Metal-based therapeutics are uniquely suited to target Aß, with ruthenium-based (Ru) complexes emerging as propitious candidates. Recently, azole-based Ru(III) complexes were observed to modulate the aggregation of Aß in solution, where the inclusion of a primary amine proximal to the ligand coordination site improved the activity of the complexes. To advance these structure-activity relationships, a series of oxazole-based Ru complexes were prepared and evaluated for their ability to modulate Aß aggregation. From these studies, a lead candidate, Oc, emerged that had superior activity relative to its azole predecessors in modulating the aggregation of soluble Aß and diminishing its cytotoxicity. Further evaluation of Oc demonstrated its ability to disrupt formed Aß aggregates, resulting in smaller amorphous species. Because altering both sides of the aggregation equilibrium for Aß has not been previously suggested for metal-based complexes for AD, this work represents an exciting new avenue for improved therapeutic success.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Complexos de Coordenação/farmacologia , Fármacos Neuroprotetores/farmacologia , Oxazóis/farmacologia , Rutênio/farmacologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Sobrevivência Celular , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Conformação Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Oxazóis/química , Agregados Proteicos/efeitos dos fármacos , Ratos , Rutênio/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
4.
J Inorg Biochem ; 214: 111303, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166864

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, characterized by extracellular protein deposits, comprised primarily of the peptide amyloid-beta (Aß), are a pathological indicator of the disease. Commonly known as Aß plaques, these deposits contain a relatively high concentration of metals, making metallotherapeutics uniquely suited to target soluble Aß, thereby limiting its aggregation and cytotoxicity. Ruthenium-based complexes are promising candidates for advancement, as the complex PMRU20 (2-aminothiazolium [trans-RuCl4(2-aminothiazole)2]) and several thiazole-based derivatives were found to prevent the aggregation of Aß, with hydrogen-bonding functional groups improving their performance. Further investigation into the impact of the heteroatom in the azole ring on the activity of Ru complexes was achieved through the synthesis and evaluation of a small set of imidazole-based compounds. The ability of the complexes to prevent the aggregation of Aß was determined where the same sample was subjected to analysis by three complementary methods: ThT fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). It was found that hydrophobic interactions, along with hydrogen-bonding via the imidazole nitrogen heteroatom, promoted interactions with the Aß peptide, thereby limiting its aggregation. Furthermore, it was found that having rapid and sequential exchange proved detrimental as it resulted in a decreased association with Aß. These results highlight important considerations between a balance of intermolecular interactions and ligand exchange kinetics in the design of further therapeutic candidates.


Assuntos
Peptídeos beta-Amiloides/química , Complexos de Coordenação/química , Imidazóis/química , Agregados Proteicos , Rutênio/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos
5.
Metallomics ; 12(4): 491-503, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32239079

RESUMO

Alzheimer's Disease (AD) is a devastating neurodegenerative disorder where one of the commonly observed pathological hallmarks is extracellular deposits of the peptide amyloid-ß (Aß). These deposits contain a high concentration of metals and initially presented a promising target for therapy; however it has become increasingly evident that the soluble form of the peptide is neurotoxic, not the amyloidogenic species. Metal-based therapeutics are uniquely suited to target soluble Aß and have shown considerable promise to prevent the aggregation and induced cytotoxicity of the peptide in vitro. Herein, we have prepared a small series of derivatives of two promising Ru(iii) complexes NAMI-A (imidazolium [trans-RuCl4(1H-imidazole)(dimethyl sulfoxide-S)]) and PMRU20 (2-aminothiazolium [trans-RuCl4(2-aminothiazole)2]), to determine structure-activity relationships (SAR) for Ru(iii) therapeutics for AD. Using the three complementary methods of Thioflavin T fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM), it was determined that the symmetry around the metal center did not significantly impact the activity of the complexes, but rather the attached thiazole ligand(s) mitigated Aß aggregation. Across both families of Ru(iii) complexes the determined SAR for the functional groups on the thiazole ligands to modulate Aß aggregation were NH2 > CH3 > H. These results highlight the importance of secondary interactions between the metallotherapeutic and the Aß peptide where hydrogen-bonding has the greatest impact on modulating Aß aggregation.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Complexos de Coordenação/metabolismo , Fragmentos de Peptídeos/metabolismo , Rutênio/metabolismo , Tiazóis/metabolismo , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Complexos de Coordenação/uso terapêutico , Cristalografia por Raios X , Humanos , Ligantes , Microscopia Eletrônica de Transmissão , Fragmentos de Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Ratos , Rutênio/química , Rutênio/uso terapêutico , Relação Estrutura-Atividade , Tiazóis/química , Tiazóis/uso terapêutico
6.
J Org Chem ; 83(17): 9818-9838, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30001484

RESUMO

Oxidopyrylium-alkene [5 + 2] cycloaddition conjugate addition cascade (C3) sequences are described. Intramolecular cycloadditions involving terminal alkenes, enals, and enones were investigated. Substrates with tethers of varying lengths delivered five- and six-membered carbocycles and heterocycles thus demonstrating the scope and limitation of the cycloaddition-conjugate addition cascade. Several experiments and theoretical calculations provide evidence for the proposed mechanistic pathway.

7.
Chem Commun (Camb) ; 50(65): 9130-3, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24990799

RESUMO

Novel oxidopyrylium-alkene [5+2] cycloaddition conjugate addition cascade (C(3)) sequences are described. Various acetoxypyranone-alkenes with pendant nucleophiles undergo [5+2] cycloaddition followed by conjugate addition from the concave face of the intermediate pyranone toward bridged, tetracyclic ethers. In several cases, 3 new rings, 4 new bonds, and 6 new contiguous stereocenters are constructed with excellent diastereoselectivity. Finally, an asynchronous concerted reaction pathway is proposed to explain the high diastereoselectivity of the oxidopyrylium-alkene [5+2] C(3).

8.
Org Lett ; 15(13): 3270-3, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23790080

RESUMO

Unique reactivity of anti- and syn-acetoxypyranones was observed in oxidopyrylium-alkene [5 + 2] cycloadditions. The subtle interplay between the corresponding acetoxypyranone conformation and steric bulk of tertiary amine bases causes syn-acetoxypyranones to undergo [5 + 2] cycloaddition appreciably faster than anti-acetoxypyranones. Additionally, the efficiency of a cascade process that afforded a novel tetracyclic lactol was determined to be dependent on the relative stereochemistry of each diastereomer, the amine base utilized, and the addition of water.

9.
Ecol Lett ; 16(3): 346-53, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23279570

RESUMO

Females of many species obtain benefits by mating polyandrously, and often prefer novel males over previous mates. However, how do females recognise previous mates, particularly in the face of cognitive constraints? Female crickets appear to have evolved a simple but effective solution: females imbue males with their own cuticular hydrocarbons (CHCs) at mating and utilise chemosensory self-referencing to recognise recent mates. Female CHC profiles exhibited significant additive genetic variation, demonstrating that genetically unique chemical cues are available to support chemosensory self-referencing. CHC profiles of males became more similar to those of females after mating, indicating physical transfer of CHCs between individuals during copulation. Experimental perfuming of males with female CHCs resulted in a female aversion to males bearing chemical cues similar to their own. Chemosensory self-referencing, therefore, could be a widespread mechanism by which females increase the diversity of their mating partners.


Assuntos
Gryllidae/fisiologia , Hidrocarbonetos/química , Preferência de Acasalamento Animal , Animais , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Gryllidae/química , Masculino , Microextração em Fase Sólida
10.
Artigo em Inglês | MEDLINE | ID: mdl-19085591

RESUMO

This study examined the use of a whole-cell biocatalyst to transesterify triglycerides, including high-Free Fatty Acid (FFA) waste greases, in a water-containing system. The whole-cell biocatalyst derived from Rhizopus oryzae (ATCC10260) was grown and reacted at room temperature without immobilization. The effectiveness of improving biodiesel yield through alteration of reaction temperature, additional alcohol, and additional transesterification reaction was also examined. Results showed that whole-cell biocatalyst was able to produce biodiesel with a yield of about 75% for virgin canola oil, 80% for waste vegetable oil and 55% for brown grease with a 72-hr transesterification reaction using no excess methanol. Elevating the reaction temperature to 35 degrees C significantly diminished the yield. An additional dose of methanol with another 24 hours of reaction time or a second 72-hr reaction resulted in biodiesel yield approaching 90% and only 3% residual glycerides (mono-, di- and tri-glycerides). These results suggest that whole-cell biocatalysts are able to transesterify waste oils or greases that are high in FFA and contain water. Brown (trap) grease and similar degraded or complex greases may be good candidates for further whole-cell biocatalyst research.


Assuntos
Fontes de Energia Bioelétrica , Gasolina , Rhizopus/metabolismo , Água/química , Biocatálise , Esterificação , Temperatura Alta
11.
Artigo em Inglês | MEDLINE | ID: mdl-18393066

RESUMO

This research examined the effect of using separate hydrolysis and methanolysis reactions for biodiesel production using a whole-cell biocatalysts derived from Rhizopus Oryzae (ATCC 10260). Biodiesel yield from separate hydrolysis and methanolysis was compared to transesterification reactions where both hydrolysis and methanolysis reactions occur in the same reactor. All reactions were conducted at room temperature. The effect of substituting ethanol for methanol was also studied. Separating the hydrolysis and methanolysis reactions did not significantly increase biodiesel yields; however, this approach successfully converted about 99% of triglycerides into fatty acid methyl esters (FAME) and free fatty acids (FFA). Use of ethanol in place of methanol did not significantly improve the biodiesel yield. However, there is evidence that ethanol may either esterify FFA more quickly than methanol, or result in a more stable ester. The best biodiesel yield was about 90% when a transesterification reaction using methanol was followed by one hydrolysis and one ethanolysis reaction; however, this is only slightly higher than the 88% biodiesel yield of two transesterification reactions in series (using methanol as alcohol).


Assuntos
Fontes de Energia Bioelétrica , Gasolina , Metano/metabolismo , Catálise , Cromatografia Gasosa , Esterificação , Hidrólise , Rhizopus/metabolismo
12.
Chemistry ; 12(36): 9150-60, 2006 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-17136778

RESUMO

Reaction of K(10)[alpha(2)-P(2)W(17)O(61)] or K(10)[alpha(1)-P(2)W(17)O(61)] or [Bu(4)N][OsCl(4)N] in a water/methanol mixture, and subsequent precipitation with (Bu(4)N)Br provided [alpha(2)-P(2)W(17)O(61){Os(VI)N}](7-) and [alpha(1)-P(2)W(17)O(61){Os(VI)N}](7-) Dawson structures as tetrabutylammonium salts. Reactions of [(Bu(4)N)(4)][alpha-H(3)PW(11)O(39)] with either [ReCl(3)(N(2)Ph(2))(PPh(3))(2)] or [Bu(4)N][ReCl(4)N] are alternatives to the synthesis of [(Bu(4)N)(4)][alpha-PW(11)O(39){Re(VI)N}]. (183)W and (15)N NMR, EPR, IR, and UV-visible spectroscopies and cyclic voltammetry have been used to characterize these compounds and the corresponding [(Bu(4)N)(4)][alpha-PW(11)O(39){Os(VI)N}] Keggin derivative.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...