Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 19825, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615887

RESUMO

Preclinical and clinical studies have shown that stem cells can promote the regeneration of damaged tissues, but therapeutic protocols need better quality control to confirm the location and number of transplanted cells. This study describes in vivo imaging while assessing reporter gene expression by its binding to a radiolabelled molecule to the respective receptor expressed in target cells. Five mice underwent human skeletal muscle-derived stem/progenitor cell (huSkMDS/PC EF1-HSV-TK) intracardial transplantation after induction of myocardial infarction (MI). The metabolic parameters of control and post-infarction stem progenitor cell-implanted mice were monitored using 2-deoxy-18F-fluorodeoxyglucose ([18F]-FDG) before and after double promotor/reporter probe imaging with 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine ([18F]-FHBG) using positron emission tomography (PET) combined with computed tomography (CT). Standardized uptake values (SUVs) were then calculated based on set regions of interest (ROIs). Experimental animals were euthanized after magnetic resonance imaging (MRI). Molecular [18F]-FHBG imaging of myogenic stem/progenitor cells in control and post-infarction mice confirmed the survival and proliferation of transplanted cells, as shown by an increased or stable signal from the PET apparatus throughout the 5 weeks of monitoring. huSkMDS/PC EF1-HSV-TK transplantation improved cardiac metabolic ([18F]-FDG with PET) and haemodynamic (MRI) parameters. In vivo PET/CT and MRI revealed that the precise use of a promotor/reporter probe incorporated into stem/progenitor cells may improve non-invasive monitoring of targeted cellular therapy in the cardiovascular system.


Assuntos
Fluordesoxiglucose F18 , Imagem Molecular , Mioblastos Cardíacos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Células-Tronco Adultas/metabolismo , Animais , Modelos Animais de Doenças , Ecocardiografia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos SCID , Imagem Molecular/métodos , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/etiologia , Poliésteres
2.
Int J Mol Sci ; 22(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34639225

RESUMO

Current treatment protocols for myocardial infarction improve the outcome of disease to some extent but do not provide the clue for full regeneration of the heart tissues. An increasing body of evidence has shown that transplantation of cells may lead to some organ recovery. However, the optimal stem cell population has not been yet identified. We would like to propose a novel pro-regenerative treatment for post-infarction heart based on the combination of human skeletal myoblasts (huSkM) and mesenchymal stem cells (MSCs). huSkM native or overexpressing gene coding for Cx43 (huSKMCx43) alone or combined with MSCs were delivered in four cellular therapeutic variants into the healthy and post-infarction heart of mice while using molecular reporter probes. Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) performed right after cell delivery and 24 h later revealed a trend towards an increase in the isotopic uptake in the post-infarction group of animals treated by a combination of huSkMCx43 with MSC. Bioluminescent imaging (BLI) showed the highest increase in firefly luciferase (fluc) signal intensity in post-infarction heart treated with combination of huSkM and MSCs vs. huSkM alone (p < 0.0001). In healthy myocardium, however, nanoluciferase signal (nanoluc) intensity varied markedly between animals treated with stem cell populations either alone or in combinations with the tendency to be simply decreased. Therefore, our observations seem to show that MSCs supported viability, engraftment, and even proliferation of huSkM in the post-infarction heart.


Assuntos
Células-Tronco Mesenquimais/citologia , Imagem Molecular/métodos , Mioblastos Esqueléticos/citologia , Infarto do Miocárdio/patologia , Miocárdio/patologia , Animais , Modelos Animais de Doenças , Genes Reporter , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mioblastos Esqueléticos/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo
3.
ACS Comb Sci ; 17(9): 488-92, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26263300

RESUMO

A novel method of evaluating the enantioselectivity of chiral receptors is investigated. It involves extraction of an ionic guest in racemic form from an ion-exchange resin to the organic solvent, where it is bound by a chiral receptor. The enantioselectivity of the examined receptor is determined simply by measuring the enantiomeric excess of the extracted guest. We show that the concept is viable for neutral receptors binding chiral organic anions extracted into acetonitile. This method was determined to be more accurate and far less time-consuming than the classical titrations. Multiple racemic guests can be applied to a resin in a single experiment, giving the method a very high throughput.


Assuntos
Extração em Fase Sólida/métodos , Estereoisomerismo , Algoritmos , Aminoácidos/síntese química , Ânions , Cromatografia Gasosa , Ensaios de Triagem em Larga Escala , Troca Iônica , Resinas de Troca Iônica , Espectroscopia de Ressonância Magnética , Conformação Molecular , Reprodutibilidade dos Testes , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA