Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 18359, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110119

RESUMO

We present a combined resonant soft X-ray reflectivity and electric transport study of [Formula: see text]/[Formula: see text] field effect devices. The depth profiles with atomic layer resolution that are obtained from the resonant reflectivity reveal a pronounced temperature dependence of the two-dimensional electron liquid at the [Formula: see text]/[Formula: see text] interface. At room temperature the corresponding electrons are located close to the interface, extending down to 4 unit cells into the [Formula: see text] substrate. Upon cooling, however, these interface electrons assume a bimodal depth distribution: They spread out deeper into the [Formula: see text] and split into two distinct parts, namely one close to the interface with a thickness of about 4 unit cells and another centered around 9 unit cells from the interface. The results are consistent with theoretical predictions based on oxygen vacancies at the surface of the [Formula: see text] film and support the notion of a complex interplay between structural and electronic degrees of freedom.

2.
Sci Rep ; 7(1): 13792, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29061996

RESUMO

Combining dissimilar transition metal oxides (TMOs) into artificial heterostructures enables to create electronic interface systems with new electronic properties that do not exist in bulk. A detailed understanding of how such interfaces can be used to tailor physical properties requires characterization techniques capable to yield interface sensitive spectroscopic information with monolayer resolution. In this regard resonant x-ray reflectivity (RXR) provides a unique experimental tool to achieve exactly this. It yields the element specific electronic depth profiles in a non-destructive manner. Here, using a YBa2Cu3O7-δ (YBCO) thin film, we demonstrate that RXR is further capable to deliver site selectivity. By applying a new analysis scheme to RXR, which takes the atomic structure of the material into account, together with information of the local charge anisotropy of the resonant ions, we obtained spectroscopic information from the different Cu sites (e.g., chain and plane) throughout the film profile. While most of the film behaves bulk-like, we observe that the Cu-chains at the surface show characteristics of electron doping, whereas the Cu-planes closest to the surface exhibit an orbital reconstruction similar to that observed at La1-x Ca x MnO3/YBCO interfaces.

3.
Phys Rev Lett ; 117(11): 115501, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661698

RESUMO

Using resonant magnetic diffraction at the Ni L_{2,3} edge in a LaNiO_{3} superlattice, we show that dynamical effects beyond the standard kinematic approximation can drastically modify the resonant scattering cross section. In particular, the combination of extinction and refraction convert maxima to minima in the azimuthal-angle dependence of the diffracted intensity, which is commonly used to determine orbital and magnetic structures by resonant x-ray diffraction. We provide a comprehensive theoretical description of these effects by numerically solving Maxwell's equations in three dimensions. The understanding and description of dynamical diffraction enhances the capabilities of resonant x-ray scattering as a probe of electronic ordering phenomena in solids.

4.
Phys Rev Lett ; 109(26): 267202, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368608

RESUMO

We present an element selective resonant magnetic x-ray scattering study of NdFe3(BO3)4 as a function of temperature and applied magnetic field. Our measurements show that the magnetic order of the Nd sublattice is induced by the Fe spin order. When a magnetic field is applied parallel to the hexagonal basal plane, the helicoidal spin order is suppressed and a collinear ordering, where the moments are forced to align in a direction perpendicular to the applied magnetic field, is stabilized. This result excludes a noncollinear spin order as the origin of the magnetically induced electric polarization in this compound. Instead our data imply that magnetic frustration results in a phase competition, which is the origin of the magnetoelectric response.

5.
Nat Mater ; 8(4): 305-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19234445

RESUMO

The competition of magnetic order and superconductivity is a key element in the physics of all unconventional superconductors, for example in high-transition-temperature cuprates, heavy fermions and organic superconductors. Here superconductivity is often found close to a quantum critical point where long-range antiferromagnetic order is gradually suppressed as a function of a control parameter, for example charge-carrier doping or pressure. It is believed that dynamic spin fluctuations associated with this quantum critical behaviour are crucial for the mechanism of superconductivity. Recently, high-temperature superconductivity has been discovered in iron pnictides, providing a new class of unconventional superconductors. Similar to other unconventional superconductors, the parent compounds of the pnictides show a magnetic ground state and superconductivity is induced on charge-carrier doping. In this Letter the structural and electronic phase diagram is investigated by means of X-ray scattering, muon spin relaxation and Mössbauer spectroscopy on the series LaO(1-x)F(x)FeAs. We find a discontinuous first-order-like change of the Néel temperature, the superconducting transition temperature and the respective order parameters. Our results strongly question the relevance of quantum critical behaviour in iron pnictides and prove a strong coupling of the structural orthorhombic distortion and the magnetic order both disappearing at the phase boundary to the superconducting state.

6.
Phys Rev Lett ; 101(23): 237003, 2008 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-19113583

RESUMO

We report upper critical field Bc2(T) data for disordered (arsenic-deficient) LaO0.9F0.1FeAs1-delta in a wide temperature and magnetic field range up to 47 T. Because of the large linear slope of Bc2 approximately -5.4 to -6.6 T/K near Tc approximately 28.5 K, the T dependence of the in-plane Bc2(T) shows a flattening near 23 K above 30 T which points to Pauli-limited behavior with Bc2(0) approximately 63-68 T. Our results are discussed in terms of disorder effects within [corrected] unconventional superconducting pairings.

7.
Phys Rev Lett ; 101(4): 047003, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18764358

RESUMO

We have performed 75As nuclear magnetic resonance measurements on aligned powders of the new LaFeAsO0.9F0.1 superconductor. In the normal state, we find a strong temperature dependence of the spin shift and Korringa behavior of the spin lattice relaxation rate. In the superconducting state, we find evidence for line nodes in the superconducting gap and spin-singlet pairing. Our measurements reveal a strong anisotropy of the spin lattice relaxation rate, which suggests that superconducting vortices contribute to the relaxation rate when the field is parallel to the c axis but not for the perpendicular direction.

8.
Phys Rev Lett ; 101(7): 077005, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18764570

RESUMO

We present a detailed study on the magnetic order in the undoped mother compound LaFeAsO of the recently discovered Fe-based superconductor LaFeAsO1-xFx. In particular, we present local probe measurements of the magnetic properties of LaFeAsO by means of 57Fe Mössbauer spectroscopy and muon-spin relaxation in zero external field along with magnetization and resistivity studies. These experiments prove a commensurate static magnetic order with a strongly reduced ordered moment of 0.25(5)muB at the iron site below T(N)=138 K, well separated from a structural phase transition at T(S)=156 K. The temperature dependence of the sublattice magnetization is determined and compared to theory. Using a four-band spin density wave model both, the size of the order parameter and the quick saturation below T(N) are reproduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA