Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(45): 30708-30715, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34805698

RESUMO

We prepared single-walled carbon nanotube (SWNT) suspensions in phosphate buffer solutions containing 1% of a coconut-based natural detergent (COCO) or 1% of sodium dodecyl sulfate (SDS). The suspensions exhibited strong photoluminescence (PL) in the near-infrared region, suggesting that the SWNTs, such as those with (9, 4) and (7, 6) chiralities, were monodispersed. Upon diluting the suspensions with a detergent-free phosphate buffer solution, the PL intensity of the SDS-containing SWNT suspension was significantly lower than that of the COCO-containing SWNT suspension. The COCO-containing SWNT suspension was more stable than the SDS-containing SWNT suspension. The SWNT concentration of the suspensions prepared via bath-type sonication was lower than that of the suspensions prepared via probe-type sonication. However, near-infrared (NIR) PL intensity of the SWNT suspensions prepared via bath-type sonication was much higher than that of the SWNT suspensions prepared via probe-type sonication regardless of the detergent. This suggested that the fraction of monodispersed SWNTs of the suspensions prepared via bath-type sonication was larger than that of the suspensions prepared via probe-type sonication, although the SWNT concentration was low. Our results indicated that COCO favored the fabrication of SWNT suspensions with stable and strong NIR PL, which are useful for various biological applications.

2.
Microsc Microanal ; : 1-7, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34294188

RESUMO

The study of the sinking phenomenon of diatom cells, which have a slightly larger specific gravity (~1.3) compared to that of water, is an important research topic for understanding photosynthetic efficiency. In this study, we successfully demonstrated the observation of the sinking behaviors of four different species of diatom using a homemade "tumbled" optical microscope. A homemade 1 mm3 microchamber was employed to decrease the effects of convection currents. In the microchamber, diatom cells were basically settled in a linear manner without floating, although some of the cells were rotated during their sinking. Sinking speeds of the four species of diatom cells, Nitzschia sp., Pheodactylum tricornutum, Navicula sp., and Odontella aurita, were 0.81 ± 5.56, 3.03 ± 10.17, 3.29 ± 7.39, and 11.22 ± 21.42 µm/s, respectively, based on the automatic tracking analysis of the centroids of each cell. Manual analysis of a vector between two longitudinal ends of the cells (two-point analysis) was effective for quantitatively characterizing the rotation phenomenon; therefore, angles and angular velocities of rotating cells were well determined as a function of time. The effects of the cell shapes on sinking velocity could be explained by simulation analysis using the modified Stokes' law proposed by Miklasz et al.

3.
Molecules ; 26(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068851

RESUMO

Solubilization of carbon nanotubes (CNTs) is a fundamental technique for the use of CNTs and their conjugates as nanodevices and nanobiodevices. In this work, we demonstrate the preparation of CNT suspensions with "green" detergents made from coconuts and bamboo as fundamental research in CNT nanotechnology. Single-walled CNTs (SWNTs) with a few carboxylic acid groups (3-5%) and pristine multi-walled CNTs (MWNTs) were mixed in each detergent solution and sonicated with a bath-type sonicator. The prepared suspensions were characterized using absorbance spectroscopy, scanning electron microscopy, and Raman spectroscopy. Among the eight combinations of CNTs and detergents (two types of CNTs and four detergents, including sodium dodecyl sulfate (SDS) as the standard), SWNTs/MWNTs were well dispersed in all combinations except the combination of the MWNTs and the bamboo detergent. The stability of the suspensions prepared with coconut detergents was better than that prepared with SDS. Because the efficiency of the bamboo detergents against the MWNTs differed significantly from that against the SWNTs, the natural detergent might be useful for separating CNTs. Our results revealed that the use of the "green" detergents had the advantage of dispersing CNTs as well as SDS.


Assuntos
Detergentes/química , Nanotubos de Carbono/química , Centrifugação , Nanotubos de Carbono/ultraestrutura , Suspensões
4.
Nanomaterials (Basel) ; 10(2)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973149

RESUMO

Carbon nanotubes (CNTs) have been extensively studied as one of the most interesting nanomaterials for over 25 years because they exhibit excellent mechanical, electrical, thermal, optical, and electrical properties. In the past decade, the number of publications and patents on cellulose and nanocellulose (NC) increased tenfold. Research on NC with excellent mechanical properties, flexibility, and transparency is accelerating due to the growing environmental problems surrounding us such as CO2 emissions, the accumulation of large amounts of plastic, and the depletion of energy resources such as oil. Research on mixed materials of cellulose, NC, and CNTs has been expanding because these materials exhibit various characteristics that can be controlled by varying the combination of cellulose, NC to CNTs while also being biodegradable and recyclable. An understanding of these mixed materials is required because these characteristics are diverse and are expected to solve various environmental problems. Thus far, many review papers on cellulose, NC or CNTs have been published. Although guidance for the suitable application of these mixed materials is necessary, there are few reviews summarizing them. Therefore, this review introduces the application and feature on mixed materials of cellulose, NC and CNTs.

5.
J Microbiol Methods ; 168: 105804, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31837352

RESUMO

Diatoms are one of the major photosynthetic planktons. Here, we studied movements of aqueous suspensions of diatoms using a home-made 'tumbled' optical microscope system. The usual inverted optical microscope was reoriented using a homemade microscope stand so that the vertical sample stage contacted the surface. To observe the intrinsic sinking phenomenon of individual Navicula sp. cells, which have slender bodies, a homemade microchamber (1 mm3) was employed. Most of the cells uniformly sunk with a velocity of 2 to 14 µm/s. Automatic and manual two points trajectory analyses were carried out. The manual analysis was able to assess the rotation of cells. The novel methods provide new information about cell movements in aqueous systems that could not be obtained using conventional methods.


Assuntos
Diatomáceas/fisiologia , Microscopia/instrumentação , Microscopia/métodos , Análise de Célula Única/instrumentação , Análise de Célula Única/métodos , Movimento , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...