Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 6059, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229487

RESUMO

Extracellular matrix (ECM) elasticity is perceived by cells via focal adhesion structures, which transduce mechanical cues into chemical signalling to conform cell behavior. Although the contribution of ECM compliance to the control of cell migration or division is extensively studied, little is reported regarding infectious processes. We study this phenomenon with the extraintestinal Escherichia coli pathogen UTI89. We show that UTI89 takes advantage, via its CNF1 toxin, of integrin mechanoactivation to trigger its invasion into cells. We identify the HACE1 E3 ligase-interacting protein Optineurin (OPTN) as a protein regulated by ECM stiffness. Functional analysis establishes a role of OPTN in bacterial invasion and integrin mechanical coupling and for stimulation of HACE1 E3 ligase activity towards the Rac1 GTPase. Consistent with a role of OPTN in cell mechanics, OPTN knockdown cells display defective integrin-mediated traction force buildup, associated with limited cellular invasion by UTI89. Nevertheless, OPTN knockdown cells display strong mechanochemical adhesion signalling, enhanced Rac1 activation and increased cyclin D1 translation, together with enhanced cell proliferation independent of ECM stiffness. Together, our data ascribe a new function to OPTN in mechanobiology.


Assuntos
Ciclina D1 , Integrinas , Divisão Celular , Ciclina D1/metabolismo , Integrinas/metabolismo , Mecanotransdução Celular/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
J Cell Biol ; 221(11)2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36169638

RESUMO

Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers contribute to the flux of membrane lipids and proteins to acceptor organelles, but how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. Using imaging approaches on cells and in vitro membrane systems, we show that phosphatidylinositol-4-phosphate (PI4P) and biogenesis of lysosome-related organelles complex 1 (BLOC-1) govern the formation, stability, and functions of recycling endosomal tubules. In vitro, BLOC-1 binds and tubulates negatively charged membranes, including those containing PI4P. In cells, endosomal PI4P production by type II PI4-kinases is needed to form and stabilize BLOC-1-dependent recycling endosomal tubules. Decreased PI4KIIs expression impairs the recycling of endosomal cargoes and the life cycles of intracellular pathogens such as Chlamydia bacteria and influenza virus that exploit the membrane dynamics of recycling endosomes. This study demonstrates how a phospholipid and a protein complex coordinate the remodeling of cellular membranes into functional tubules.


Assuntos
Endossomos , Membranas Intracelulares , Peptídeos e Proteínas de Sinalização Intracelular , Fosfatos de Fosfatidilinositol , Membrana Celular/metabolismo , Endossomos/metabolismo , Membranas Intracelulares/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico
3.
FEBS J ; 289(7): 1779-1800, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33752267

RESUMO

Atg16-like (ATG16L) proteins were identified in higher eukaryotes for their resemblance to Atg16, a yeast protein previously characterized as a subunit of the Atg12-Atg5/Atg16 complex. In yeast, this complex catalyzes the lipidation of Atg8 on pre-autophagosomal structures and is therefore required for the formation of autophagosomes. In higher eukaryotes, ATG16L1 is also almost exclusively present as part of an ATG12-ATG5/ATG16L1 complex and has the same essential function in autophagy. However, ATG16L1 is three times bigger than Atg16. It displays, in particular, a carboxy-terminal extension, including a WD40 domain, which provides a platform for interaction with a variety of proteins, and allows for the recruitment of the ATG12-ATG5/ATG16L1 complex to membranes under different contexts. Furthermore, detailed analyses at the cellular level have revealed that some of the ATG16L1-driven activities are independent of the lipidation reaction catalyzed by the ATG12-ATG5/ATG16L1 complex. At the organ level, the use of mice that are hypomorphic for Atg16l1, or with cell-specific ablation of its expression, revealed a large panel of consequences of ATG16L1 dysfunctions. In this review, we recapitulate the current knowledge on ATG16L1 expression and functions. We emphasize, in particular, how it broadly acts as a brake on inflammation, thereby contributing to maintaining cell homeostasis. We also report on independent studies that converge to show that ATG16L1 is an important player in the regulation of intracellular traffic. Overall, autophagy-independent functions of ATG16L1 probably account for more of the phenotypes associated with ATG16L1 deficiencies than currently appreciated.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Proteínas Associadas aos Microtúbulos , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Homeostase/genética , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(43): 26784-26794, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33055216

RESUMO

The obligate intracellular bacteria Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted diseases, multiply in a vacuolar compartment, the inclusion. From this niche, they secrete "effector" proteins, that modify cellular activities to enable bacterial survival and proliferation. Here, we show that the host autophagy-related protein 16-1 (ATG16L1) restricts inclusion growth and that this effect is counteracted by the secretion of the bacterial effector CT622/TaiP (translocated ATG16L1 interacting protein). ATG16L1 is mostly known for its role in the lipidation of the human homologs of ATG8 (i.e., LC3 and homologs) on double membranes during autophagy as well as on single membranes during LC3-associated phagocytosis and other LC3-lipidation events. Unexpectedly, the LC3-lipidation-related functions of ATG16L1 are not required for restricting inclusion development. We show that the carboxyl-terminal domain of TaiP exposes a mimic of an eukaryotic ATG16L1-binding motif that binds to ATG16L1's WD40 domain. By doing so, TaiP prevents ATG16L1 interaction with the integral membrane protein TMEM59 and allows the rerouting of Rab6-positive compartments toward the inclusion. The discovery that one bacterial effector evolved to target ATG16L1's engagement in intracellular traffic rather than in LC3 lipidation brings this "secondary" activity of ATG16L1 in full light and emphasizes its importance for maintaining host cell homeostasis.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Chlamydia trachomatis/fisiologia , Interações Hospedeiro-Patógeno , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Bactérias/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas rab de Ligação ao GTP/metabolismo
5.
Nat Commun ; 8: 15839, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28643776

RESUMO

Transendothelial cell macroaperture (TEM) tunnels control endothelium barrier function and are triggered by several toxins from pathogenic bacteria that provoke vascular leakage. Cellular dewetting theory predicted that a line tension of uncharacterized origin works at TEM boundaries to limit their widening. Here, by conducting high-resolution microscopy approaches we unveil the presence of an actomyosin cable encircling TEMs. We develop a theoretical cellular dewetting framework to interpret TEM physical parameters that are quantitatively determined by laser ablation experiments. This establishes the critical role of ezrin and non-muscle myosin II (NMII) in the progressive implementation of line tension. Mechanistically, fluorescence-recovery-after-photobleaching experiments point for the upstream role of ezrin in stabilizing actin filaments at the edges of TEMs, thereby favouring their crosslinking by NMIIa. Collectively, our findings ascribe to ezrin and NMIIa a critical function of enhancing line tension at the cell boundary surrounding the TEMs by promoting the formation of an actomyosin ring.


Assuntos
Actomiosina/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Actomiosina/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Células Endoteliais da Veia Umbilical Humana/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Miosina não Muscular Tipo IIA/química , Miosina não Muscular Tipo IIA/genética , Tensão Superficial
6.
Sci Rep ; 7: 44779, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317937

RESUMO

The E3 ubiquitin ligase HACE1 is a potent tumor suppressor that controls cell proliferation and ubiquitylates the small GTPase Rac1 to target it to proteasomal degradation. Whether and how the activity of HACE1 is regulated by the N-terminal ankyrin (ANK) and the middle (MID) domains is ill defined. Here, we identified in the version 64 of the Catalogue of Somatic Mutations in Cancer (COSMIC) 13 missense mutations of hace1 located outside the HECT domain, and found that all lead to defective control of cell proliferation. In addition, several mutations located in the ankyrin domain displayed a dramatic reduction in Rac1 ubiquitylation associated with a decrease of colony formation in soft agar. 3D structure modelling of the 7 ankyrin-repeats coupled to functional analysis identified a surface epitope centered on one of the mutated residue, Gly-175, which is critical for controlling Rac1 binding and ubiquitylation. We also identified a role for the MID domain in conferring the specificity of association of HACE1 to the active form of Rac1. Our study of the functional interplay between HACE1 and Rac1 in cancer thus sheds a new light on the molecular mechanism of Rac1 ubiquitylation by HACE1 and the impact of its cancer-associated mutations in cell proliferation.


Assuntos
Mutação de Sentido Incorreto/genética , Neoplasias/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Proliferação de Células , Humanos , Modelos Moleculares , Proteínas Mutantes/química , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
7.
Cell Host Microbe ; 16(3): 338-50, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25211076

RESUMO

Dugesia japonica planarian flatworms are naturally exposed to various microbes but typically survive this challenge. We show that planarians eliminate bacteria pathogenic to Homo sapiens, Caenorhabditis elegans, and/or Drosophila melanogaster and thus represent a model to identify innate resistance mechanisms. Whole-transcriptome analysis coupled with RNAi screening of worms infected with Staphylococcus aureus or Legionella pneumophila identified 18 resistance genes with nine human orthologs, of which we examined the function of MORN2. Human MORN2 facilitates phagocytosis-mediated restriction of Mycobacterium tuberculosis, L. pneumophila, and S. aureus in macrophages. MORN2 promotes the recruitment of LC3, an autophagy protein also involved in phagocytosis, to M. tuberculosis-containing phagosomes and subsequent maturation to degradative phagolysosomes. MORN2-driven trafficking of M. tuberculosis to single-membrane, LC3-positive compartments requires autophagy-related proteins Atg5 and Beclin-1, but not Ulk-1 and Atg13, highlighting the importance of MORN2 in LC3-associated phagocytosis. These findings underscore the value of studying planarian defenses to identify immune factors.


Assuntos
Proteínas de Helminto/imunologia , Legionella pneumophila/fisiologia , Proteínas Associadas aos Microtúbulos/imunologia , Fagocitose , Planárias/imunologia , Planárias/microbiologia , Staphylococcus aureus/fisiologia , Animais , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Modelos Animais de Doenças , Proteínas de Helminto/genética , Humanos , Legionella pneumophila/imunologia , Proteínas Associadas aos Microtúbulos/genética , Planárias/genética , Staphylococcus aureus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...