Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 13(7): 2387-96, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27248573

RESUMO

Antibody-drug conjugates (ADC) rely on the target-binding specificity of an antibody to selectively deliver potent drugs to cancer cells. IgG antibody half-life is regulated by neonatal Fc receptor (FcRn) binding. Histidine 435 of human IgG was mutated to alanine (H435A) to explore the effect of FcRn binding on the pharmacokinetics, efficacy, and tolerability of two separate maytansine-based ADC pairs with noncleavable linkers, (c-DM1 and c-H435A-DM1) and (7v-Cys-may and 7v-H435A-Cys-may). The in vitro cell-killing potency of each pair of ADCs was similar, demonstrating that H435A showed no measurable impact on ADC bioactivity. The H435A mutant antibodies showed no detectable binding to human or mouse FcRn in vitro, whereas their counterpart wild-type IgG ADCs were found to bind to FcRn at pH = 6.0. In xenograft bearing SCID mice expressing mouse FcRn, the AUC of 7v-Cys-may was 1.6-fold higher than that of 7v-H435A-may, yet the observed efficacy was similar. More severe thrombocytopenia was observed with 7v-H435A-Cys-may as compared to 7v-Cys-may at multiple dose levels. The AUC of c-DM1 was approximately 3-fold higher than that of c-H435A-DM1 in 786-0 xenograft bearing SCID mice, which led to a 3-fold difference in efficacy by dose. Murine FcRn knockout, human FcRn transgenic line 32 SCID animals bearing 786-0 xenografts showed an amplified exposure difference between c-DM1 and c-H435A-DM1 as compared to murine FcRn expressing SCID mice, leading to a 10-fold higher dose required for efficacy despite a 6-fold higher AUC of the c-H435A-DM1. The accelerated clearance observed for the noncleavable maytansine ADCs with the H435A FcRn mutation led to reduced efficacy at equivalent doses and exacerbation of clinical pathology parameters (decreased tolerability) at equivalent doses. The results show that reduced ADC clearance mediated by FcRn modulation can improve therapeutic index.


Assuntos
Anticorpos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoconjugados/farmacologia , Imunoglobulina G/metabolismo , Receptores Fc/metabolismo , Animais , Anticorpos/genética , Ligante CD27/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Imunoconjugados/química , Maitansina/metabolismo , Camundongos , Camundongos SCID , Receptores Fc/genética
2.
Cancer Res ; 75(24): 5329-40, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26631267

RESUMO

Antibody-drug conjugates (ADC) target cytotoxic drugs to antigen-positive cells for treating cancer. After internalization, ADCs with noncleavable linkers are catabolized to amino acid-linker-warheads within the lysosome, which then enter the cytoplasm by an unknown mechanism. We hypothesized that a lysosomal transporter was responsible for delivering noncleavable ADC catabolites into the cytoplasm. To identify candidate transporters, we performed a phenotypic shRNA screen with an anti-CD70 maytansine-based ADC. This screen revealed the lysosomal membrane protein SLC46A3, the genetic attenuation of which inhibited the potency of multiple noncleavable antibody-maytansine ADCs, including ado-trastuzumab emtansine. In contrast, the potencies of noncleavable ADCs carrying the structurally distinct monomethyl auristatin F were unaffected by SLC46A3 attenuation. Structure-activity experiments suggested that maytansine is a substrate for SLC46A3. Notably, SLC46A3 silencing led to relative increases in catabolite concentrations in the lysosome. Taken together, our results establish SLC46A3 as a direct transporter of maytansine-based catabolites from the lysosome to the cytoplasm, prompting further investigation of SLC46A3 as a predictive response marker in breast cancer specimens.


Assuntos
Antineoplásicos Fitogênicos/metabolismo , Imunoconjugados/metabolismo , Maitansina/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antineoplásicos Fitogênicos/administração & dosagem , Linhagem Celular Tumoral , Citoplasma/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Imunoconjugados/administração & dosagem , Lisossomos/metabolismo , Maitansina/administração & dosagem
3.
Drug Metab Dispos ; 43(9): 1341-4, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26101225

RESUMO

Antibody drug conjugates are emerging as a powerful class of antitumor agents with efficacy across a range of cancers; therefore, understanding the disposition of this class of therapeutic is crucial. Reported here is a method of enriching a specific organelle (lysosome) to understand the catabolism of an anti-CD70 Ab-MCC-DM1, an antibody drug conjugate with a noncleavable linker. With such techniques a higher degree of concentration-activity relationship can be established for in vitro cell lines; this can aid in understanding the resultant catabolite concentrations necessary to exert activity.


Assuntos
Imunoconjugados/metabolismo , Lisossomos/metabolismo , Preparações Farmacêuticas/metabolismo , Ligante CD27/imunologia , Linhagem Celular Tumoral , Humanos
4.
Mol Cancer Ther ; 14(7): 1614-24, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25931519

RESUMO

Epidermal growth factor receptor variant III (EGFRvIII) is a cancer-specific deletion mutant observed in approximately 25% to 50% of glioblastoma multiforme (GBM) patients. An antibody drug conjugate, AMG 595, composed of the maytansinoid DM1 attached to a highly selective anti-EGFRvIII antibody via a noncleavable linker, was developed to treat EGFRvIII-positive GBM patients. AMG 595 binds to the cell surface and internalizes into the endo-lysosomal pathway of EGFRvIII-expressing cells. Incubation of AMG 595 with U251 cells expressing EGFRvIII led to potent growth inhibition. AMG 595 treatment induced significant tumor mitotic arrest, as measured by phospho-histone H3, in GBM subcutaneous xenografts expressing EGFRvIII. A single intravenous injection of AMG 595 at 17 mg/kg (250 µg DM1/kg) generated complete tumor regression in the U251vIII subcutaneous xenograft model. AMG 595 mediated tumor regression in the D317 subcutaneous xenograft model that endogenously expresses EGFRvIII. Finally, AMG 595 treatment inhibited the growth of D317 xenografts orthotopically implanted into the brain as determined by magnetic resonance imaging. These results demonstrate that AMG 595 is a promising candidate to evaluate in EGFRvIII-expressing GBM patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Receptores ErbB/imunologia , Glioblastoma/tratamento farmacológico , Imunoconjugados/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/imunologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Glioblastoma/imunologia , Glioblastoma/metabolismo , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/imunologia , Imuno-Histoquímica , Injeções Intravenosas , Maitansina/análogos & derivados , Maitansina/imunologia , Maitansina/farmacologia , Camundongos Nus , Camundongos SCID , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/imunologia
5.
Protein Eng Des Sel ; 19(7): 299-307, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16644914

RESUMO

The chimeric anti-CD30 IgG1, cAC10, conjugated to eight equivalents of monomethyl auristatin E (MMAE) was previously shown to have potent antitumor activity against CD30-expressing tumors xenografts in mice. Moreover, the therapeutic index was increased by lowering the stoichiometry from 8 drugs/antibody down to 2 or 4. Limitations of such 'partially-loaded' conjugates are low yield (10-30%) as they are purified from mixtures with variable stoichiometry (0-8 drugs/antibody), and heterogeneity as the 2 or 4 drugs are distributed over eight possible cysteine conjugation sites. Here, the solvent-accessible cysteines that form the interchain disulfide bonds in cAC10 were replaced with serine, to reduce the eight potential conjugation sites down to 4 or 2. These Cys-->Ser antibody variants were conjugated to MMAE in near quantitative yield (89-96%) with defined stoichiometries (2 or 4 drugs/antibody) and sites of drug attachment. The engineered antibody-drug conjugates have comparable antigen-binding affinities and in vitro cytotoxic activities with corresponding purified parental antibody-drug conjugates. Additionally, the engineered and parental antibody-drug conjugates have similar in vivo properties including antitumor activity, pharmacokinetics and maximum tolerated dose. Our strategy for generating antibody-drug conjugates with defined sites and stoichiometries of drug loading is potentially broadly applicable to other antibodies as it involves engineering of constant domains.


Assuntos
Anticorpos Monoclonais/imunologia , Antineoplásicos/farmacocinética , Imunoconjugados/farmacocinética , Oligopeptídeos/farmacocinética , Animais , Anticorpos Monoclonais/química , Antineoplásicos/química , Sequência de Bases , Sítios de Ligação , Cisteína/química , Dissulfetos/química , Dissulfetos/metabolismo , Imunoconjugados/imunologia , Antígeno Ki-1/imunologia , Ligantes , Dose Máxima Tolerável , Camundongos , Oligopeptídeos/química , Engenharia de Proteínas , Serina/química , Solventes/química , Transplante Heterólogo , Células Tumorais Cultivadas
6.
Bioconjug Chem ; 16(5): 1282-90, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16173809

RESUMO

Site-specific conjugation of small molecules and enzymes to monoclonal antibodies has broad utility in the formation of conjugates for therapeutic, diagnostic, or structural applications. Precise control over the location of conjugation would yield highly homogeneous materials that could have improved biological properties. We describe for the first time chemical reduction and oxidation methods that lead to preferential cleavage of particular monoclonal antibody interchain disulfides using the anti-CD30 IgG1 monoclonal antibody cAC10. Alkylation of the resulting cAC10 cysteine thiols with the potent antimitotic agent monomethyl auristatin E (MMAE) enabled the assignment of drug conjugation location by purification with hydrophobic interaction chromatography followed by analysis using reversed-phase HPLC and capillary electrophoresis. These analytical methods demonstrated that treating cAC10 with reducing agents such as DTT caused preferential reduction of heavy-light chain disulfides, while reoxidation of fully reduced cAC10 interchain disulfides caused preferential reformation of heavy-light chain disulfides. Following MMAE conjugation, the resulting conjugates had isomeric homogeneity as high as 60-90%, allowing for control of the distribution of molecular species. The resulting conjugates are highly active both in vitro and in vivo and are well tolerated at efficacious doses.


Assuntos
Anticorpos Monoclonais/química , Dissulfetos/química , Alquilação , Animais , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Reagentes de Ligações Cruzadas/química , Ditiotreitol/química , Ditiotreitol/farmacologia , Humanos , Isomerismo , Antígeno Ki-1/imunologia , Camundongos , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Fatores de Tempo
7.
Bioconjug Chem ; 16(1): 131-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15656584

RESUMO

One pretargeting approach to cancer radioimmunotherapy utilizes an antibody-streptavidin conjugate that is first localized to the tumor. A "clearing agent" is then administered to remove the excess bioconjugate from blood, followed by injection of the radiolabeled biotin therapeutic. In this study, the role of streptavidin-biotin affinity in this pretargeting system was investigated for the first time in vivo, with a reduced affinity, site-directed streptavidin mutant and with radiolabeled bis-biotin reagents. The S45A streptavidin mutant (SA-S45A), which displays a faster off-rate for biotin, was utilized with a bivalent biotin carrier that retains high avidity for the streptavidin mutant. Mice were fed either a normal or biotin-deficient diet, yielding serum endogenous biotin concentrations of 31 nM and 5 nM, respectively. Lymphoma-bearing nude mice pretargeted with 1F5 Antibody-SA-Wild Type (WT) bioconjugates produced (125)I-bis-biotin tumor concentrations of 2.2%ID/g and 7.0%ID/g in mice fed normal diets vs biotin-deficient diets. (125)I-bis-biotin tumor concentrations of mice pretargeted with 1F5-SA-S45A were 12%ID/g and 10%ID/g for mice fed normal and biotin-deficient diets, respectively. However, poor clearance of the 1F5-SA-S45A with the biotinylated clearing agent led to high normal organ concentrations of (125)I-bis-biotin. A galactosylated human serum albumin (HSA) modified with bis-biotin was then tested, and normal organ (125)I-bis-biotin concentrations were significantly reduced. Tumor-to-organ ratios achieved for 1F5-SA-S45A with the HSA-bis-biotin clearing agent in mice with high serum biotin were similar to those achieved with 1F5-SA-WT in mice with low serum biotin. These results demonstrate that exchange of bound endogenous biotin with lower affinity streptavidin mutants is possible, and that corresponding use of bis-biotin carriers can nearly eliminate the differences in therapeutic radioactivity at the tumor site in animals on normal vs biotin-deficient diets. The results also interestingly demonstrate, however, that improved clearance agents capable of removing the lower affinity streptavidin-antibody conjugate are needed to achieve comparable specificity in tumor to blood or normal organ ratios.


Assuntos
Biotina/farmacologia , Linfoma/tratamento farmacológico , Radioimunoterapia , Estreptavidina/farmacologia , Animais , Sítios de Ligação , Biotina/análogos & derivados , Biotina/uso terapêutico , Humanos , Linfoma/metabolismo , Camundongos , Camundongos Nus , Mutagênese Sítio-Dirigida , Neoplasias Experimentais/tratamento farmacológico , Especificidade de Órgãos , Estreptavidina/uso terapêutico , Frações Subcelulares
8.
Clin Cancer Res ; 10(20): 7063-70, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15501986

RESUMO

PURPOSE: An antibody-drug conjugate consisting of monomethyl auristatin E (MMAE) conjugated to the anti-CD30 monoclonal antibody (mAb) cAC10, with eight drug moieties per mAb, was previously shown to have potent cytotoxic activity against CD30(+) malignant cells. To determine the effect of drug loading on antibody-drug conjugate therapeutic potential, we assessed cAC10 antibody-drug conjugates containing different drug-mAb ratios in vitro and in vivo. EXPERIMENTAL DESIGN: Coupling MMAE to the cysteines that comprise the interchain disulfides of cAC10 created an antibody-drug conjugate population, which was purified using hydrophobic interaction chromatography to yield antibody-drug conjugates with two, four, and eight drugs per antibody (E2, E4, and E8, respectively). Antibody-drug conjugate potency was tested in vitro against CD30(+) lines followed by in vivo xenograft models. The maximum-tolerated dose and pharmacokinetic profiles of the antibody-drug conjugates were investigated in mice. RESULTS: Although antibody-drug conjugate potency in vitro was directly dependent on drug loading (IC(50) values E8

Assuntos
Anticorpos Monoclonais/imunologia , Imunoconjugados/imunologia , Linfoma Difuso de Grandes Células B/imunologia , Oligopeptídeos/farmacologia , Animais , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais/farmacologia , Humanos , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Antígeno Ki-1/imunologia , Linfoma Difuso de Grandes Células B/patologia , Dose Máxima Tolerável , Camundongos , Oligopeptídeos/farmacocinética , Transplante Heterólogo , Células Tumorais Cultivadas
9.
Bioconjug Chem ; 13(3): 588-98, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12009950

RESUMO

Pretargeted radioimmunotherapy specifically targets radiation to tumors using antibody-streptavidin conjugates followed by radiolabeled biotin. A potential barrier to this cancer therapy is the presence of endogenous biotin in serum, which can block the biotin-binding sites of the antibody-streptavidin conjugate before the administration of radiolabeled biotin. Serum-derived biotin can also be problematic in clinical diagnostic applications. Due to the extremely slow dissociation of the biotin-streptavidin complex, this endogenous biotin can irreversibly block the biotin-binding sites of streptavidin and reduce therapeutic efficacy, as well as reduce sensitivity in diagnostic assays. We tested a streptavidin mutant (SAv-Y43A), which has a 67-fold lower affinity for biotin than wild type streptavidin, and three bivalent bis-biotin constructs as replacements for wild-type streptavidin and biotin used in pretargeting and clinical diagnostics. Biotin dimers were engineered with certain parameters including water solubility, biotinidase resistance, and linker lengths long enough to span the distance between two biotin-binding sites of streptavidin. The bivalent biotins were compared to biotin in exchange, retention, and off-rate assays. The faster off-rate of SAv-Y43A allowed efficient exchange of prebound biotin by the biotin dimers. In fluorescent competition experiments, the biotin dimer ligands displayed high avidity binding and essentially irreversible retention with SAv-Y43A. The off-rate of a biotinidase-stabilized biotin dimer from SAv-Y43A was 4.36 x 10(-)(6) s(-)(1), over 640 times slower compared to biotin. These findings strongly suggest that employing a mutant streptavidin in concert with a bivalent biotin can mitigate the deleterious impact of endogenous biotin, by allowing exchange of bound biotin and retention of the biotin dimer carriers.


Assuntos
Anticorpos Monoclonais/imunologia , Biotina/metabolismo , Estreptavidina/metabolismo , Anticorpos Bloqueadores/metabolismo , Anticorpos Bloqueadores/farmacologia , Anticorpos Antineoplásicos/imunologia , Ligação Competitiva , Dimerização , Humanos , Radioisótopos do Iodo/química , Cinética , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...