Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 116(9): 2393-2411, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31112285

RESUMO

The new and rapid advancement in the complexity of biologics drug discovery has been driven by a deeper understanding of biological systems combined with innovative new therapeutic modalities, paving the way to breakthrough therapies for previously intractable diseases. These exciting times in biomedical innovation require the development of novel technologies to facilitate the sophisticated, multifaceted, high-paced workflows necessary to support modern large molecule drug discovery. A high-level aspiration is a true integration of "lab-on-a-chip" methods that vastly miniaturize cellulmical experiments could transform the speed, cost, and success of multiple workstreams in biologics development. Several microscale bioprocess technologies have been established that incrementally address these needs, yet each is inflexibly designed for a very specific process thus limiting an integrated holistic application. A more fully integrated nanoscale approach that incorporates manipulation, culture, analytics, and traceable digital record keeping of thousands of single cells in a relevant nanoenvironment would be a transformative technology capable of keeping pace with today's rapid and complex drug discovery demands. The recent advent of optical manipulation of cells using light-induced electrokinetics with micro- and nanoscale cell culture is poised to revolutionize both fundamental and applied biological research. In this review, we summarize the current state of the art for optical manipulation techniques and discuss emerging biological applications of this technology. In particular, we focus on promising prospects for drug discovery workflows, including antibody discovery, bioassay development, antibody engineering, and cell line development, which are enabled by the automation and industrialization of an integrated optoelectronic single-cell manipulation and culture platform. Continued development of such platforms will be well positioned to overcome many of the challenges currently associated with fragmented, low-throughput bioprocess workflows in biopharma and life science research.


Assuntos
Automação , Produtos Biológicos , Descoberta de Drogas , Dispositivos Lab-On-A-Chip , Humanos
2.
Am J Physiol Endocrinol Metab ; 307(12): E1144-52, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25370851

RESUMO

Elucidating the role of secreted frizzled-related protein 5 (SFRP5) in metabolism and obesity has been complicated by contradictory findings when knockout mice were used to determine metabolic phenotypes. By overexpressing SFRP5 in obese, prediabetic mice we consistently observed elevated hyperglycemia and glucose intolerance, supporting SFRP5 as a negative regulator of glucose metabolism. Accordingly, Sfrp5 mRNA expression analysis of both epididymal and subcutaneous adipose depots of mice indicated a correlation with obesity. Thus, we generated a monoclonal antibody (mAb) against SFRP5 to ascertain the effect of SFRP5 inhibition in vivo. Congruent with SFRP5 overexpression worsening blood glucose levels and glucose intolerance, anti-SFRP5 mAb therapy improved these phenotypes in vivo. The results from both the overexpression and mAb inhibition studies suggest a role for SFRP5 in glucose metabolism and pancreatic ß-cell function and thus establish the use of an anti-SFRP5 mAb as a potential approach to treat type 2 diabetes.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos Monoclonais/imunologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Imunoglobulina G/imunologia , Células Secretoras de Insulina/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...