Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 72(6): 1500-16, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19460094

RESUMO

Biofilms are communities of surface-attached, matrix-embedded microbial cells that can resist antimicrobial chemotherapy and contribute to persistent infections. Using an Escherichia coli biofilm model we found that exposure of bacteria to subinhibitory concentrations of ribosome-targeting antibiotics leads to strong biofilm induction. We present evidence that this effect is elicited by the ribosome in response to translational stress. Biofilm induction involves upregulation of the polysaccharide adhesin poly-beta-1,6-N-acetyl-glucosamine (poly-GlcNAc) and two components of the poly-GlcNAc biosynthesis machinery, PgaA and PgaD. Poly-GlcNAc control depends on the bacterial signalling molecules guanosine-bis 3', 5'(diphosphate) (ppGpp) and bis-(3'-5')-cyclic di-GMP (c-di-GMP). Treatment with translation inhibitors causes a ppGpp hydrolase (SpoT)-mediated reduction of ppGpp levels, resulting in specific derepression of PgaA. Maximal induction of PgaD and poly-GlcNAc synthesis requires the production of c-di-GMP by the dedicated diguanylate cyclase YdeH. Our results identify a novel regulatory mechanism that relies on ppGpp signalling to relay information about ribosomal performance to the Pga machinery, thereby inducing adhesin production and biofilm formation. Based on the important synergistic roles of ppGpp and c-di-GMP in this process, we suggest that interference with bacterial second messenger signalling might represent an effective means for biofilm control during chronic infections.


Assuntos
Biofilmes/crescimento & desenvolvimento , GMP Cíclico/análogos & derivados , Escherichia coli/fisiologia , Guanosina Tetrafosfato/metabolismo , Ribossomos/efeitos dos fármacos , Sistemas do Segundo Mensageiro , Adesinas Bacterianas/metabolismo , Antibacterianos/farmacologia , GMP Cíclico/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Pirofosfatases/genética , Pirofosfatases/metabolismo , Processamento Pós-Transcricional do RNA , beta-Glucanas/metabolismo
2.
Nucleic Acids Res ; 33(6): 1760-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15788748

RESUMO

Although the DNA cleavage mechanism of Type I restriction-modification enzymes has been extensively studied, the mode of cleavage remains elusive. In this work, DNA ends produced by EcoKI, EcoAI and EcoR124I, members of the Type IA, IB and IC families, respectively, have been characterized by cloning and sequencing restriction products from the reactions with a plasmid DNA substrate containing a single recognition site for each enzyme. Here, we show that all three enzymes cut this substrate randomly with no preference for a particular base composition surrounding the cleavage site, producing both 5'- and 3'-overhangs of varying lengths. EcoAI preferentially generated 3'-overhangs of 2-3 nt, whereas EcoKI and EcoR124I displayed some preference for the formation of 5'-overhangs of a length of approximately 6-7 and 3-5 nt, respectively. A mutant EcoAI endonuclease assembled from wild-type and nuclease-deficient restriction subunits generated a high proportion of nicked circular DNA, whereas the wild-type enzyme catalyzed efficient cleavage of both DNA strands. We conclude that Type I restriction enzymes require two restriction subunits to introduce DNA double-strand breaks, each providing one catalytic center for phosphodiester bond hydrolysis. Possible models for DNA cleavage are discussed.


Assuntos
DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Sequência de Bases , Clonagem Molecular , DNA/química , Enzimas de Restrição do DNA/metabolismo
3.
J Mol Biol ; 330(1): 29-42, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12818200

RESUMO

Bloom syndrome protein forms an oligomeric ring structure and belongs to a group of DNA helicases showing extensive homology to the Escherichia coli DNA helicase RecQ, a suppressor of illegitimate recombination. After over-production in E.coli, we have purified the RecQ core of BLM consisting of the DEAH, RecQ-Ct and HRDC domains (amino acid residues 642-1290). The BLM(642-1290) fragment could function as a DNA-stimulated ATPase and as a DNA helicase, displaying the same substrate specificity as the full-size protein. Gel-filtration experiments revealed that BLM(642-1290) exists as a monomer both in solution and in its single-stranded DNA-bound form, even in the presence of Mg(2+) and ATPgammaS. Rates of ATP hydrolysis and DNA unwinding by BLM(642-1290) showed a hyperbolic dependence on ATP concentration, excluding a co-operative interaction between ATP-binding sites. Using a lambda Spi(-) assay, we have found that the BLM(642-1290) fragment is able to partially substitute for the RecQ helicase in suppressing illegitimate recombination in E.coli. A deletion of 182 C-terminal amino acid residues of BLM(642-1290), including the HRDC domain, resulted in helicase and single-stranded DNA-binding defects, whereas kinetic parameters for ATP hydrolysis of this mutant were close to the BLM(642-1290) values. This confirms the prediction that the HRDC domain serves as an auxiliary DNA-binding domain. Mutations at several conserved residues within the RecQ-Ct domain of BLM reduced ATPase and helicase activities severely as well as single-stranded DNA-binding of the enzyme. Together, these data define a minimal helicase domain of BLM and demonstrate its ability to act as a suppressor of illegitimate recombination.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/análogos & derivados , DNA Helicases/genética , DNA Helicases/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/isolamento & purificação , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Bioquímica/métodos , DNA Helicases/química , DNA Helicases/isolamento & purificação , Escherichia coli/genética , Humanos , Magnésio/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Estrutura Terciária de Proteína , RecQ Helicases , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Recombinação Genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Soluções , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Diabetes ; 51(6): 1805-14, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12031968

RESUMO

Type 1 diabetes is characterized by the infiltration of activated leukocytes within the pancreatic islets, leading to beta-cell dysfunction and destruction. The exact role played by interferon-gamma, tumor necrosis factor (TNF)-alpha, and interleukin-1beta in this pathogenic process is still only partially understood. To study cytokine action at the cellular level, we are working with the highly differentiated insulin-secreting cell line, betaTc-Tet. We previously reported that it was susceptible to apoptosis induced by TNF-alpha, in combination with interleukin-1beta and interferon-gamma. Here, we report that cytokine-induced apoptosis was correlated with the activation of caspase-8. We show that in betaTc-Tet cells, overexpression of cFLIP, the cellular FLICE (FADD-like IL-1beta-converting enzyme)-inhibitory protein, completely abolished cytokine-dependent activation of caspase-8 and protected the cells against apoptosis. Furthermore, cFLIP overexpression increased the basal and interleukin-1beta-mediated transcriptional activity of nuclear factor (NF)-kappaB, whereas it did not change cytokine-induced inducible nitric oxide synthase gene transcription and nitric oxide secretion. The presence of cFLIP prevented the weak TNF-alpha-induced reduction in cellular insulin content and secretion; however, it did not prevent the decrease in glucose-stimulated insulin secretion induced by the combined cytokines, in agreement with our previous data demonstrating that interferon-gamma alone could induce these beta-cell dysfunctions. Together, our data demonstrate that overexpression of cFLIP protects mouse beta-cells against TNF-alpha-induced caspase-8 activation and apoptosis and is correlated with enhanced NF-kappaB transcriptional activity, suggesting that cFLIP may have an impact on the outcome of death receptor-triggered responses by directing the intracellular signals from beta-cell death to beta-cell survival.


Assuntos
Apoptose , Proteínas de Transporte/fisiologia , Caspases/metabolismo , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Ilhotas Pancreáticas/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Animais , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Proteínas de Transporte/genética , Caspase 8 , Caspase 9 , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Expressão Gênica , Glucose/farmacologia , Humanos , Secreção de Insulina , Interferon gama/farmacologia , Interleucina-1/farmacologia , Ilhotas Pancreáticas/citologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo II , Proteínas Recombinantes , Transcrição Gênica , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA