Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(1): 451-474, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837297

RESUMO

The hyperarid Sahara Desert presents extreme and persistent dry conditions with a limited number of hours during which the moisture availability, temperature and light allow phototrophic growth. Some cyanobacteria can live in these hostile conditions by seeking refuge under (hypolithic) or inside (endolithic) rocks, by colonizing porous spaces (cryptoendoliths) or fissures in stones (chasmoendoliths). Chroococcidiopsis spp. have been reported as the dominant or even the only phototrophs in these hot desert lithic communities. However, the results of this study reveal the high diversity of and variability in cyanobacteria among the sampled habitats in the Sahara Desert. The chasmoendolithic samples presented high coccoid cyanobacteria abundances, although the dominant cyanobacteria were distinct among different locations. A high predominance of a newly described cyanobacterium, Pseudoacaryochloris sahariense, was found in hard, compact, and more opaque stones with cryptoendolithic colonization. On the other hand, the hypolithic samples were dominated by filamentous, non-heterocystous cyanobacteria. Thermophysiological bioassays confirmed desiccation and extreme temperature tolerance as drivers in the cyanobacterial community composition of these lithic niches. The results of the present study provide key factors for understanding life strategies under polyextreme environmental conditions. The isolated strains, especially the newly described cyanobacterium P. sahariense, might represent suitable microorganisms in astrobiology studies aimed at investigating the limits of life.


Assuntos
Cianobactérias , Clima Desértico , África , Cianobactérias/fisiologia , Ecossistema , Temperatura Alta , Microbiologia do Solo
2.
Microorganisms ; 9(3)2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33669110

RESUMO

The Sahara Desert is characterized by extreme environmental conditions, which are a unique challenge for life. Cyanobacteria are key players in the colonization of bare soils and form assemblages with other microorganisms in the top millimetres, establishing biological soil crusts (biocrusts) that cover most soil surfaces in deserts, which have important roles in the functioning of drylands. However, knowledge of biocrusts from these extreme environments is limited. Therefore, to study cyanobacterial community composition in biocrusts from the Sahara Desert, we utilized a combination of methodologies in which taxonomic assignation, for next-generation sequencing of soil samples, was based on phylogenetic analysis (16S rRNA gene) in parallel with morphological identification of cyanobacteria in natural samples and isolates from certain locations. Two close locations that differed in microenvironmental conditions were analysed. One was a dry salt lake (a "chott"), and the other was an extension of sandy, slightly saline soil. Differences in cyanobacterial composition between the sites were found, with a clear dominance of Microcoleus spp. in the less saline site, while the chott presented a high abundance of heterocystous cyanobacteria as well as the filamentous non-heterocystous Pseudophormidium sp. and the unicellular cf. Acaryochloris. The cyanobacteria found in our study area, such as Microcoleus steenstrupii, Microcoleus vaginatus, Scytonema hyalinum, Tolypothrix distorta, and Calothrix sp., are also widely distributed in other geographic locations around the world, where the conditions are less severe. Our results, therefore, indicated that some cyanobacteria can cope with polyextreme conditions, as confirmed by bioassays, and can be considered extremotolerant, being able to live in a wide range of conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA