Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1175946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484467

RESUMO

Grasslands play an important role in conserving natural biodiversity and providing ecosystem functions and services for societies. Soil fertility is an important property in grassland, and the monitoring of soil fertility can provide crucial information to optimize ecosystem productivity and sustainability. Testing various soil physiochemical properties related to fertility usually relies on traditional measures, such as destructive sampling, pre-test treatments, labor-intensive procedures, and costly laboratory measurements, which are often difficult to perform. However, soil enzyme activity reflecting the intensity of soil biochemical reactions is a reliable indicator of soil properties and thus enzyme assays could be an efficient alternative to evaluate soil fertility. Here, we review the latest research on the features and functions of enzymes catalyzing the biochemical processes that convert organic materials to available plant nutrients, increase soil carbon and nutrient cycling, and enhance microbial activities to improve soil fertility. We focus on the complex relationships among soil enzyme activities and functions, microbial biomass, physiochemical properties, and soil/crop management practices. We highlight the biochemistry of enzymes and the rationale for using enzyme activities to indicate soil fertility. Finally, we discuss the limits and disadvantages of the potential new molecular tool and provide suggestions to improve the reliability and feasibility of the proposed alternative.

2.
Front Microbiol ; 13: 815890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756012

RESUMO

The North American Great Plains cover a large area of the Nearctic ecozone, and an important part of this biome is semiarid. The sustainable intensification of agriculture that is necessary to produce food for an ever-increasing world population requires knowledge of the taxonomic and functional structure of the soil microbial community. In this study, we investigated the influence of soil depth on the composition and functions of the microbial communities hosted in agricultural soils of a semiarid agroecosystem, using metagenomic profiling, and compared them to changes in soil chemical and physical properties. Shotgun sequencing was used to determine the composition and functions of the soil microbial community of 45 soil samples from three soil depths (0-15 cm, 15-30 cm, and 30-60 cm) under different agricultural land use types (native prairie, seeded prairie, and cropland) in southwest Saskatchewan. Analysis of community composition revealed the declining abundance of phyla Verrucomicrobia, Bacteroidetes, Chlorophyta, Bacillariophyta, and Acidobacteria with soil depth, whereas the abundance of phyla Ascomycota, Nitrospirae, Planctomycetes, and Cyanobacteria increased with soil depth. Soil functional genes related to nucleosides and nucleotides, phosphorus (P) metabolism, cell division and cell cycle, amino acids and derivatives, membrane transport, and fatty acids were particularly abundant at 30-60 cm. In contrast, functional genes related to DNA and RNA metabolism, metabolism of nitrogen, sulfur and carbohydrates, and stress response were more abundant in the top soil depth. The RDA analysis of functional genes and soil physico-chemical properties revealed a positive correlation between phages and soil organic P concentrations. In the rooting zone of this semiarid agroecosystem, soil microbes express variable structural patterns of taxonomic and functional diversity at different soil depths. This study shows that the soil microbial community is structured by soil depth and physicochemical properties, with the middle soil depth being an intermediate transition zone with a higher taxonomic diversity. Our results suggest the co-existence of various microbial phyla adapted to upper and lower soil depths in an intermediate-depth transition zone.

3.
Front Plant Sci ; 13: 828145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283923

RESUMO

Arbuscular mycorrhizal fungi (AMF) are obligate plant symbionts that improve the nutrition and health of their host. Most, but not all the crops form a symbiosis with AMF. It is the case for canola (Brassica napus), an important crop in the Canadian Prairies that is known to not form this association. From 2008 to 2018, an experiment was replicated at three locations of the Canadian Prairies and it was used to assess the impact of canola on the community of AMF naturally occurring in three cropping systems, canola monoculture, or canola in two different rotation systems (2-years, canola-wheat and 3-years, barley-pea-canola). We sampled canola rhizosphere and bulk soils to: (i) determine diversity and community structure of AMF, we expected that canola will negatively impact AMF communities in function of its frequency in crop rotations and (ii) wanted to assess how these AMF communities interact with other fungi and bacteria. We detected 49 AMF amplicon sequence variants (ASVs) in canola rhizosphere and bulk soils, confirming the persistence of a diversified AMF community in canola-planted soil, even after 10 years of canola monoculture, which was unexpected considering that canola is among non-mycorrhizal plants. Network analysis revealed a broad range of potential interactions between canola-associated AMF and some fungal and bacterial taxa. We report for the first time that two AMF, Funneliformis mosseae and Rhizophagus iranicus, shared their bacterial cohort almost entirely in bulk soil. Our results suggest the existence of non-species-specific AMF-bacteria or AMF-fungi relationships that could benefit AMF in absence of host plants. The persistence of an AMF community in canola rhizosphere and bulk soils brings a new light on AMF ecology and leads to new perspectives for further studies about AMF and soil microbes interactions and AMF subsistence without mycotrophic host plants.

4.
Microb Ecol ; 84(4): 1166-1181, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34727198

RESUMO

The subterranean microbiota of plants is of great importance for plant growth and health, as root-associated microbes can perform crucial ecological functions. As the microbial environment of roots is extremely diverse, identifying keystone microorganisms in plant roots, rhizosphere, and bulk soil is a necessary step towards understanding the network of influence within the microbial community associated with roots and enhancing its beneficial elements. To target these hot spots of microbial interaction, we used inter-kingdom network analysis on the canola growth phase of a long-term cropping system diversification experiment conducted at four locations in the Canadian Prairies. Our aims were to verify whether bacterial and fungal communities of canola roots, rhizosphere, and bulk soil are related and influenced by diversification of the crop rotation system; to determine whether there are common or specific core fungi and bacteria in the roots, rhizosphere, and bulk soil under canola grown in different environments and with different levels of cropping system diversification; and to identify hub taxa at the inter-kingdom level that could play an important ecological role in the microbiota of canola. Our results showed that fungi were influenced by crop diversification, which was not the case on bacteria. We found no core microbiota in canola roots but identified three core fungi in the rhizosphere, one core mycobiota in the bulk soil, and one core bacterium shared by the rhizosphere and bulk soil. We identified two bacterial and one fungal hub taxa in the inter-kingdom networks of the canola rhizosphere, and one bacterial and two fungal hub taxa in the bulk soil. Among these inter-kingdom hub taxa, Bradyrhizobium sp. and Mortierella sp. are particularly influential on the microbial community and the plant. To our knowledge, this is the first inter-kingdom network analysis utilized to identify hot spots of interaction in canola microbial communities.


Assuntos
Bradyrhizobium , Brassica napus , Microbiota , Solo , Microbiologia do Solo , Fungos , Raízes de Plantas/microbiologia , Canadá , Rizosfera , Bactérias , Plantas
5.
Front Microbiol ; 11: 1587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849330

RESUMO

The rhizosphere hosts a complex web of prokaryotes interacting with one another that may modulate crucial functions related to plant growth and health. Identifying the key factors structuring the prokaryotic community of the plant rhizosphere is a necessary step toward the enhancement of plant production and crop yield with beneficial associative microorganisms. We used a long-term field experiment conducted at three locations in the Canadian prairies to verify that: (1) the level of cropping system diversity influences the α- and ß-diversity of the prokaryotic community of canola (Brassica napus) rhizosphere; (2) the canola rhizosphere community has a stable prokaryotic core; and (3) some highly connected taxa of this community fit the description of hub-taxa. We sampled the rhizosphere of canola grown in monoculture, in a 2-phase rotation (canola-wheat), in a 3-phase rotation (pea-barley-canola), and in a highly diversified 6-phase rotation, five and eight years after cropping system establishment. We detected only one core bacterial Amplicon Sequence Variant (ASV) in the prokaryotic component of the microbiota of canola rhizosphere, a hub taxon identified as cf. Pseudarthrobacter sp. This ASV was also the only hub taxon found in the networks of interactions present in both years and at all three sites. We highlight a cohort of bacteria and archaea that were always connected with the core taxon in the network analyses.

6.
Front Plant Sci ; 11: 1206, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849748

RESUMO

Wheat is among the important crops harnessed by humans whose breeding efforts resulted in a diversity of genotypes with contrasting traits. The goal of this study was to determine whether different old and new cultivars of durum wheat (Triticum turgidum L. var. durum) recruit specific arbuscular mycorrhizal (AM) fungal communities from indigenous AM fungal populations of soil under field conditions. A historical set of five landraces and 26 durum wheat cultivars were field cultivated in a humid climate in Eastern Canada, under phosphorus-limiting conditions. To characterize the community of AMF inhabiting bulk soil, rhizosphere, and roots, MiSeq amplicon sequencing targeting the 18S rRNA gene (SSU) was performed on total DNAs using a nested PCR approach. Mycorrhizal colonization was estimated using root staining and microscope observations. A total of 317 amplicon sequence variants (ASVs) were identified as belonging to Glomeromycota. The core AM fungal community (i.e., ASVs present in > 50% of the samples) in the soil, rhizosphere, and root included 29, 30, and 29 ASVs, respectively. ASVs from the genera Funneliformis, Claroideoglomus, and Rhizophagus represented 37%, 18.6%, and 14.7% of the sequences recovered in the rarefied dataset, respectively. The two most abundant ASVs had sequence homology with the 18S sequences from well-identified herbarium cultures of Funneliformis mosseae BEG12 and Rhizophagus irregularis DAOM 197198, while the third most abundant ASV was assigned to the genus Paraglomus. Cultivars showed no significant difference of the percentage of root colonization ranging from 57.8% in Arnautka to 84.0% in AC Navigator. Cultivars were generally associated with similar soil, rhizosphere, and root communities, but the abundance of F. mosseae, R. irregularis, and Claroideoglomus sp. sequences varied in Eurostar, Golden Ball, and Wakooma. Although these results were obtained in one field trial using a non-restricted pool of durum wheat and at the time of sampling, that may have filtered the community in biotopes. The low genetic variation between durum wheat cultivars for the diversity of AM symbiosis at the species level suggests breeding resources need not be committed to leveraging plant selective influence through the use of traditional methods for genotype development.

7.
Environ Microbiol ; 22(11): 4545-4556, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32656968

RESUMO

Agricultural production is dependent on inputs of nitrogen (N) whose cycle relies on soil and crop microbiomes. Crop diversification has increased productivity; however, its impact on the expression of microbial genes involved in N-cycling pathways remains unknown. Here, we assessed N-cycling gene expression patterns in the root and rhizosphere microbiomes of five oilseed crops as influenced by three 2-year crop rotations. The first phase consisted of fallow, lentil or wheat, and the second phase consisted of one of five oilseed crops. Expression of bacterial amoA, nirK and nirS genes showed that the microbiome of Ethiopian mustard had the lowest and that of camelina the highest potential for N loss. A preceding rotation phase of lentil significantly increased the expression of nifH gene by 23% compared with wheat and improved nxrA gene expression by 51% with chemical fallow in the following oilseed crops respectively. Lentil substantially increased biological N2 fixation and reduced denitrification in the following oilseed crops. Our results also revealed that most N-cycling gene transcripts are more abundant in the microbiomes associated with roots than with the rhizosphere. The outcome of our investigation brings a new level of understanding on how crop diversification and rotation sequences are related to N-cycling in annual cropping systems.


Assuntos
Camellia/metabolismo , Produtos Agrícolas/microbiologia , Lens (Planta)/metabolismo , Mostardeira/metabolismo , Ciclo do Nitrogênio/fisiologia , Triticum/metabolismo , Agricultura/métodos , Bactérias/genética , Camellia/microbiologia , Produção Agrícola/métodos , Lens (Planta)/microbiologia , Microbiota/fisiologia , Mostardeira/microbiologia , Nitrogênio/metabolismo , Ciclo do Nitrogênio/genética , Raízes de Plantas/microbiologia , Rizosfera , Solo , Microbiologia do Solo , Triticum/microbiologia
8.
Microb Ecol ; 80(4): 762-777, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31897569

RESUMO

Rhizosphere microbes influence one another, forming extremely complex webs of interactions that may determine plant success. Identifying the key factors that structure the fungal microbiome of the plant rhizosphere is a necessary step in optimizing plant production. In a long-term field experiment conducted at three locations in the Canadian prairies, we tested the following hypotheses: (1) diversification of cropping systems influences the fungal microbiome of the canola (Brassica napus) rhizosphere; (2) the canola rhizosphere has a core fungal microbiome, i.e., a set of fungi always associated with canola; and (3) some taxa within the rhizosphere microbiome of canola are highly interrelated and fit the description of hub taxa. Our results show that crop diversification has a significant effect on the structure of the rhizosphere fungal community but not on fungal diversity. We also discovered and described a canola core microbiome made up of one zero-radius operational taxonomic unit (ZOTU), cf. Olpidium brassicae, and an eco-microbiome found only in 2013 consisting of 47 ZOTUs. Using network analysis, we identified four hub taxa in 2013: ZOTU14 (Acremonium sp.), ZOTU28 (Sordariomycetes sp.), ZOTU45 (Mortierella sp.) and ZOTU179 (cf. Ganoderma applanatum), and one hub taxon, ZOTU17 (cf. Mortierella gamsii) in 2016. None of these most interacting taxa belonged to the core microbiome or eco-microbiome for each year of sampling. This temporal variability puts into question the idea of a plant core fungal microbiome and its stability. Our results provide a basis for the development of ecological engineering strategies for the improvement of canola production systems in Canada.


Assuntos
Brassica napus/microbiologia , Produção Agrícola , Fungos/isolamento & purificação , Micobioma/fisiologia , Rizosfera , Alberta , Produção Agrícola/métodos , Saskatchewan , Estações do Ano
9.
Environ Microbiol ; 22(3): 1066-1088, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31600863

RESUMO

Soil microorganisms play a critical role in the biosphere, and the influence of cropland fertilization on the evolution of soil as a living entity is being actively documented. In this study, we used a shotgun metagenomics approach to globally expose the effects of 50-year N and P fertilization of wheat on soil microbial community structure and function, and their potential involvement in overall N cycling. Nitrogen (N) fertilization increased alpha diversity in archaea and fungi while reducing it in bacteria. Beta diversity of archaea, bacteria and fungi, as well as soil function, were also mainly driven by N fertilization. The abundance of archaea was negatively impacted by N fertilization while bacterial and fungal abundance was increased. The responses of N metabolism-related genes to fertilization differed in archaea, bacteria and fungi. All archaeal N metabolic processes were decreased by N fertilization, while denitrification, assimilatory nitrate reduction and organic-N metabolism were highly increased by N fertilization in bacteria. Nitrate assimilation was the main contribution of fungi to N cycling. Thaumarchaeota and Halobacteria in archaea; Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria in bacteria; and Sordariomycetes in fungi participated dominantly and widely in soil N metabolic processes.


Assuntos
Microbiota/efeitos dos fármacos , Nitrogênio/farmacologia , Fósforo/farmacologia , Microbiologia do Solo , Triticum/microbiologia , Archaea/efeitos dos fármacos , Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biodiversidade , Fertilizantes , Fungos/efeitos dos fármacos , Fungos/fisiologia , Estudos Longitudinais , Solo/química , Triticum/crescimento & desenvolvimento
10.
Mycorrhiza ; 29(6): 591-598, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31760478

RESUMO

Arbuscular mycorrhizal (AM) fungi are ecologically important for the growth and survival of most vascular plants. These fungi are known as obligate biotrophs that acquire carbon solely from host plants. A 13C-labeling experiment revealed the ability of axenically grown Rhizophagus irregularis DAOM 197198 to derive carbon from axenic culture on a relatively novel medium containing two sources of palmitic acid developed by Ishii (designated IH medium). In a separate experiment, this model fungus grew larger mycelia and produced more daughter spores on the IH medium in the presence of two Variovorax paradoxus strains than in axenic culture. In contrast, a strain of Mycobacterium sp. did not influence the growth of the AM fungus. Rhizophagus irregularis produced branched absorbing structures on the IH medium and, in monoxenic culture with V. paradoxus, sometimes formed densely packed hyphal coils. In this study, we report for the first time the formation of coarse terminal pelotons and of terminal and intercalary very fine (≈ 1 µm diameter) hyphal elongations, which could form daughter spores in the presence of V. paradoxus. This study shows the value of IH medium and certain rhizobacteria in the culture of R. irregularis DAOM 197198 in vitro.


Assuntos
Glomeromycota , Micorrizas , Técnicas de Cocultura , Hifas , Desenvolvimento Vegetal , Raízes de Plantas
11.
PLoS One ; 14(8): e0221037, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31393956

RESUMO

We proposed a theoretical framework predicting mutualistic outcomes for the arbuscular mycorrhizal (AM) symbiosis based on host provenance (crop versus wild). To test the framework, we grew two isolates of Rhizoglomus irregulare (commercial versus an isolate locally isolated), with five crop plants and five wild plants endemic to the region that co-occur with the locally sourced fungus. While inoculation with either isolate had no effect on plant biomass, it decreased leaf P content, particularly for wild plants. All plants associating with the commercial fungus had lower leaf P. Overall, our data shows that wild plants may be more sensitive to differences in mutualistic quality among fungal isolates.


Assuntos
Produtos Agrícolas/microbiologia , Micorrizas/fisiologia , Biomassa , Glomeromycota/fisiologia , Micélio/fisiologia , Brotos de Planta/microbiologia , Esporos Fúngicos/fisiologia
12.
Data Brief ; 23: 103790, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31372436

RESUMO

The soil bacteria diversity and corresponding environmental data made available here are from a 72-field plot experiment testing the effect of pulse frequency in nine wheat-based rotation systems, in the semiarid prairie. The data include sequences of the V6-V8 regions of bacterial 16S rDNA from soil and root extracts, generated using Roche GS FLX Titanium technology, and associated environmental data, specifically levels of soil organic carbon, total carbon, total nitrogen, total phosphorus, pH, electrical conductivity, and extractible sulfate sulfur, copper, iron, manganese, zinc, potassium, nitrate nitrogen, phosphate phosphorus, calcium, and magnesium in the 0-15 cm soil layer, and mineral nitrogen and phosphate in the 0-120 cm soil layer. The grain yield of wheat in the last (4th) phase of the crop rotation systems is also given. The data can be used in meta-analyses of the effect of pea, lentil and chickpea in wheat-based cropping systems on soil bacterial diversity or for monitoring the evolution of soil bacteria communities in cultivated prairie soils in the context of climate change. Samples were collected between 2012 and 2014.

13.
Sci Total Environ ; 678: 146-161, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31075581

RESUMO

During the next decade it will be necessary to develop novel combinations of management strategies to sustainably increase crop production and soil resilience. Improving agricultural productivity, while conserving and enhancing biotic and abiotic resources, is an essential requirement to increase global food production on a sustainable basis. The role of farmers in increasing agricultural productivity growth sustainably will be crucial. Farmers are at the center of any process of change involving natural resources and for this reason they need to be encouraged and guided, through appropriate incentives and governance practices, to conserve natural ecosystems and their biodiversity, and minimize the negative impact agriculture can have on the environment. Farmers and stakeholders need to revise traditional approaches not as productive as the modern approaches but more friendly with natural and environmental ecosystems values as well as emerging novel tools and approaches addressing precise farming, organic amendments, lowered water consumption, integrated pest control and beneficial plant-microbe interactions. While practical solutions are developing, science based recommendations for crop rotations, breeding and harvest/postharvest strategies leading to environmentally sound and pollinator friendly production and better life in rural areas have to be provided.


Assuntos
Agricultura/métodos , Conservação dos Recursos Naturais/métodos , Biodiversidade , Produção Agrícola , Produtos Agrícolas , Ecossistema , Europa (Continente) , Melhoramento Vegetal
14.
Sci Total Environ ; 660: 1135-1143, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743909

RESUMO

While establishment and persistence of arbuscular mycorrhizal (AM) fungal inoculants in agricultural fields are critical to their success, little is known about how farming practices can affect their establishment in field. We developed a probe assay specific to a commercial AM fungal inoculant (Rhizoglomus irregulare DAOM197198) and tested its establishment among different grain cropping practices in the field. Establishment of the fungus was not related to cropping, or inoculation practices. Instead, establishment was site specific over the two growing seasons. Our results show that it is not yet possible to predict inoculation success in the field and use of biofertilizers requires further research under field conditions to identify key factors involved in establishment and persistence.


Assuntos
Inoculantes Agrícolas , Agricultura/métodos , Micorrizas/fisiologia , Canadá , Fertilizantes , Solo/química , Microbiologia do Solo
15.
Front Microbiol ; 9: 1909, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30190708

RESUMO

The association of plants and microbial communities is crucial for crop production, and host plants influence the composition of rhizosphere microbiomes. Pulse crops play an important role in the development of sustainable cropping systems, and producers in the Canadian prairies often increase the frequency of pulses in their cropping systems. In this study, we determined the shifts in the fungal community of pea (Pisum sativum L.) rhizosphere, as influenced by the frequency of pulses in rotation, using high throughput sequencing. Six cropping systems containing pea (P), lentil (Lens culinaris Medik., L), hybrid canola (Brassica napus L., C), wheat (Triticum aestivum L., W), and oat (Avena sativa L., O) in different intensities were tested. The fungal communities were assessed at the flowering stage in the fourth and fifth year of the 4-year rotations. Cropping system had a significant impact on the composition of the rhizosphere fungal community, and the effect of crop rotation sequence was greater and explained more of the variation than the effect of previous crops. The rotation with consecutive pulses (WPLP) decreased fungal evenness and increased the proportion of pathotrophs. Fusarium was a dominant and ubiquitous pathotrophic genus. Olpidium virulentus, Botrytis cinerea, Fusarium solani, F. graminearum, and Alternaria eichhorniae were generally more abundant in pulse intensive rotations (WPLP, WLOP, and WPOP), the exception being F. solani which was not promoted by lentil. Reads of O. virulentus and B. cinerea were most abundant in pea preceded by lentil followed by the reads of Mortierella elongata in pea preceded by wheat. Pea consistently had higher grain yield when grown in diversified rotations including wheat, canola/lentil, and oat than rotations with two repeated crops (canola or pea). Cropping system affected the soil physicochemical properties, and soil pH was the main driver of fungal community shift. No evidence of beneficial microorganisms involvement in plant productivity was observed, but the high abundance of pathotrophs in pulse intensified rotations suggests the possibility of pathogen buildup in the soil with increasing pulse frequency. Diversifying rotation sequences minimized disease risk and increased pea production, in this study. Careful selection of plant species appears as a strategy for the management of rhizosphere fungal communities and the maintenance of crop production system's health.

16.
Fungal Biol ; 122(9): 837-846, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30115317

RESUMO

The classification and physiology of the zoosporic plant-pathogen Olpidium brassicae and its relationships with the closely-related species are often confusing. This review focuses on these species and intends to differentiate them based on the literatures published since the discovery and establishment of the species by Woronin in 1878 under the name of Chytridium brassicae to current molecular era. The goal of this review is to help researchers better understand the taxonomy, the host range, and the potential role in plant health of O. brassicae-related species. To reach the goal, we reviewed the rationales behind the creation or reduction in synonymy of the different names for O. brassicae and its allied species in order to elucidate the evolution of the species concept on them based on the traditional morphological studies. Furthermore, the studies by molecular biology methods improve our knowledge and perspectives on O. brassicae and its host specificity. In particular, we clarify the differences between O. brassicae and Olpidium virulentus, and propose potential new research avenues. We therefore hope that this review will give a better perspective on Olpidium spp. and their potential role in the root microbiome of plants in natural environments and in agricultural settings.


Assuntos
Quitridiomicetos/classificação , Quitridiomicetos/patogenicidade , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Virulência
17.
Front Microbiol ; 9: 1643, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083148

RESUMO

Agriculturally-driven land transformation is increasing globally. Improving phosphorus (P) use efficiency to sustain optimum productivity in diverse ecosystems, based on knowledge of soil P dynamics, is also globally important in light of potential shortages of rock phosphate to manufacture P fertilizer. We investigated P chemical speciation and P cycling with solution 31P nuclear magnetic resonance, P K-edge X-ray absorption near-edge structure spectroscopy, phosphatase activity assays, and shotgun metagenomics in soil samples from long-term agricultural fields containing four different land-use types (native and tame grasslands, annual croplands, and roadside ditches). Across these land use types, native and tame grasslands showed high accumulation of organic P, principally orthophosphate monoesters, and high acid phosphomonoesterase activity but the lowest abundance of P cycling genes. The proportion of inositol hexaphosphates (IHP), especially the neo-IHP stereoisomer that likely originates from microbes rather than plants, was significantly increased in native grasslands than croplands. Annual croplands had the largest variances of soil P composition, and the highest potential capacity for P cycling processes based on the abundance of genes coding for P cycling processes. In contrast, roadside soils had the highest soil Olsen-P concentrations, lowest organic P, and highest tricalcium phosphate concentrations, which were likely facilitated by the neutral pH and high exchangeable Ca of these soils. Redundancy analysis demonstrated that IHP by NMR, potential phosphatase activity, Olsen-P, and pH were important P chemistry predictors of the P cycling bacterial community and functional gene composition. Combining chemical and metagenomics results provides important insights into soil P processes and dynamics in different land-use ecosystems.

18.
Front Microbiol ; 9: 1188, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29937756

RESUMO

Canola is one of the most economically important crops in Canada, and the root and rhizosphere microbiomes of a canola plant likely impact its growth and nutrient uptake. The aim of this study was to determine whether canola has a core root microbiome (i.e., set of microbes that are consistently selected in the root environment), and whether this is distinct from the core microbiomes of other crops that are commonly grown in the Canadian Prairies, pea, and wheat. We also assessed whether selected agronomic treatments can modify the canola microbiome, and whether this was associated to enhanced yield. We used a field experiment with a randomized complete block design, which was repeated at three locations across the canola-growing zone of Canada. Roots and rhizosphere soil were harvested at the flowering stage of canola. We separately isolated total extractable DNA from plant roots and from adjacent rhizosphere soil, and constructed MiSeq amplicon libraries for each of 60 samples, targeting bacterial, and archaeal 16S rRNA genes and the fungal ITS region. We determined that the microbiome of the roots and rhizosphere of canola was consistently different from those of wheat and pea. These microbiomes comprise several putative plant-growth-promoting rhizobacteria, including Amycolatopsis sp., Serratia proteamaculans, Pedobacter sp., Arthrobacter sp., Stenotrophomonas sp., Fusarium merismoides, and Fusicolla sp., which correlated positively with canola yield. Crop species had a significant influence on bacterial and fungal assemblages, especially within the roots, while higher nutrient input or seeding density did not significantly alter the global composition of bacterial, fungal, or archaeal assemblages associated with canola roots. However, the relative abundance of Olpidium brassicae, a known pathogen of members of the Brassicaceae, was significantly reduced in the roots of canola planted at higher seeding density. Our results suggest that seeding density and plant nutrition management modified the abundance of other bacterial and fungal taxa forming the core microbiomes of canola that are expected to impact crop growth. This work helps us to understand the microbial assemblages associated with canola grown under common agronomic practices and indicates microorganisms that can potentially benefit or reduce the yield of canola.

19.
Can J Microbiol ; 64(8): 527-536, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29633625

RESUMO

Understanding the variation in how wheat genotypes shape their arbuscular mycorrhizal (AM) fungal communities in a prairie environment is foundational to breeding for enhanced AM fungi-wheat interactions. The AM fungal communities associated with 32 durum wheat genotypes were described by pyrosequencing of amplicons. The experiment was set up at two locations in the Canadian prairies. The intensively managed site was highly dominated by Funneliformis. Genotype influenced the AM fungal community in the rhizosphere soil, but there was no evidence of a differential genotype effect on the AM fungal community of durum wheat roots. The influence of durum wheat genotype on the AM fungal community of the soil was less important at the intensively managed site. Certain durum wheat genotypes, such as Strongfield, Plenty, and CDC Verona, were associated with high abundance of Paraglomus, and Dominikia was undetected in the rhizosphere of the recent cultivars Enterprise, Eurostar, Commander, and Brigade. Genetic variation in the association of durum wheat with AM fungi suggests the possibility of increasing the sustainability of cropping systems through the use of durum wheat genotypes that select highly effective AM fungal taxa residing in the agricultural soils of the Canadian prairies.


Assuntos
Pradaria , Micorrizas/classificação , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Triticum/microbiologia , Agricultura , Biodiversidade , Canadá , Variação Genética , Genótipo , Micorrizas/genética , Triticum/genética
20.
Can J Microbiol ; 64(4): 265-275, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29390194

RESUMO

Plant roots host symbiotic arbuscular mycorrhizal (AM) fungi and other fungal endophytes that can impact plant growth and health. The impact of microbial interactions in roots may depend on the genetic properties of the host plant and its interactions with root-associated fungi. We conducted a controlled condition experiment to investigate the effect of several chickpea (Cicer arietinum L.) genotypes on the efficiency of the symbiosis with AM fungi and non-AM fungal endophytes. Whereas the AM symbiosis increased the biomass of most of the chickpea cultivars, inoculation with non-AM fungal endophytes had a neutral effect. The chickpea cultivars responded differently to co-inoculation with AM fungi and non-AM fungal endophytes. Co-inoculation had additive effects on the biomass of some cultivars (CDC Corrine, CDC Anna, and CDC Cory), but non-AM fungal endophytes reduced the positive effect of AM fungi on Amit and CDC Vanguard. This study demonstrated that the response of plant genotypes to an AM symbiosis can be modified by the simultaneous colonization of the roots by non-AM fungal endophytes. Intraspecific variations in the response of chickpea to AM fungi and non-AM fungal endophytes indicate that the selection of suitable genotypes may improve the ability of crop plants to take advantage of soil ecosystem services.


Assuntos
Cicer/genética , Cicer/microbiologia , Endófitos/fisiologia , Variação Genética/fisiologia , Micorrizas/fisiologia , Biomassa , Ecossistema , Fungos/crescimento & desenvolvimento , Genótipo , Desenvolvimento Vegetal , Raízes de Plantas/microbiologia , Solo , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...