Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(25): 256601, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241516

RESUMO

We demonstrate that the Berry curvature monopole of nonmagnetic two-dimensional spin-3/2 holes leads to a novel Hall effect linear in an applied in-plane magnetic field B_{∥}. Remarkably, all scalar and spin-dependent disorder contributions vanish to leading order in B_{∥}, while there is no Lorentz force and hence no ordinary Hall effect. This purely intrinsic phenomenon, which we term the anomalous planar Hall effect (APHE), provides a direct transport probe of the Berry curvature accessible in all p-type semiconductors. We discuss experimental setups for its measurement.

2.
Nat Commun ; 12(1): 5, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397919

RESUMO

One dimensional semiconductor systems with strong spin-orbit interaction are both of fundamental interest and have potential applications to topological quantum computing. Applying a magnetic field can open a spin gap, a pre-requisite for Majorana zero modes. The spin gap is predicted to manifest as a field dependent dip on the first 1D conductance plateau. However, disorder and interaction effects make identifying spin gap signatures challenging. Here we study experimentally and numerically the 1D channel in a series of low disorder p-type GaAs quantum point contacts, where spin-orbit and hole-hole interactions are strong. We demonstrate an alternative signature for probing spin gaps, which is insensitive to disorder, based on the linear and non-linear response to the orientation of the applied magnetic field, and extract a spin-orbit gap ΔE ≈ 500 µeV. This approach could enable one-dimensional hole systems to be developed as a scalable and reproducible platform for topological quantum applications.

3.
Br J Oral Maxillofac Surg ; 57(8): 788-790, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31345579

RESUMO

Glomus tumours in the lip are extremely rare with only 13 cases, including this one, recorded in the English language that we know of. We report a 45-year-old woman with a firm, mildly painful lump in her upper lip. Excisional biopsy examination and histopathological analysis showed it to be a subtype of glomus tumour called a glomangioma.


Assuntos
Tumor Glômico , Neoplasias Labiais , Feminino , Tumor Glômico/diagnóstico , Tumor Glômico/cirurgia , Humanos , Lábio , Neoplasias Labiais/diagnóstico , Neoplasias Labiais/cirurgia , Pessoa de Meia-Idade , Mucosa Bucal , Dor , Pele
4.
Phys Rev Lett ; 121(7): 077701, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169055

RESUMO

Semiconductor holes with strong spin-orbit coupling allow all-electrical spin control, with broad applications ranging from spintronics to quantum computation. Using a two-dimensional hole system in a gallium arsenide quantum well, we demonstrate a new mechanism of electrically controlling the Zeeman splitting, which is achieved through altering the hole wave vector k. We find a threefold enhancement of the in-plane g-factor g_{∥}(k). We introduce a new method for quantifying the Zeeman splitting from magnetoresistance measurements, since the conventional tilted field approach fails for two-dimensional systems with strong spin-orbit coupling. Finally, we show that the Rashba spin-orbit interaction suppresses the in-plane Zeeman interaction at low magnetic fields. The ability to control the Zeeman splitting with electric fields opens up new possibilities for future quantum spin-based devices, manipulating non-Abelian geometric phases, and realizing Majorana systems in p-type superconductor systems.

5.
Phys Rev Lett ; 121(8): 087701, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192606

RESUMO

Classical charge transport, such as longitudinal and Hall currents in weak magnetic fields, is usually not affected by quantum phenomena. Yet relativistic quantum mechanics is at the heart of the spin-orbit interaction, which has been at the forefront of efforts to realize spin-based electronics, new phases of matter, and topological quantum computing. In this work we demonstrate that quantum spin dynamics induced by the spin-orbit interaction is directly observable in classical charge transport. We determine the Hall coefficient R_{H} of two-dimensional hole systems at low magnetic fields and show that it has a sizable spin-orbit contribution, which depends on the density p, is independent of temperature, is a strong function of the top gate electric field, and can reach ∼20% of the total. We provide a general method for extracting the spin-orbit parameter from magnetotransport data, applicable even at higher temperatures where Shubnikov-de Haas oscillations and weak antilocalization are difficult to observe. Our work will enable experimentalists to measure spin-orbit parameters without requiring large magnetic fields, ultralow temperatures, or optical setups.

6.
Nat Commun ; 9(1): 3255, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30108212

RESUMO

Valence band holes confined in silicon quantum dots are attracting significant attention for use as spin qubits. However, experimental studies of single-hole spins have been hindered by challenges in fabrication and stability of devices capable of confining a single hole. To fully utilize hole spins as qubits, it is crucial to have a detailed understanding of the spin and orbital states. Here we show a planar silicon metal-oxide-semiconductor-based quantum dot device and demonstrate operation down to the last hole. Magneto-spectroscopy studies show magic number shell filling consistent with the Fock-Darwin states of a circular two-dimensional quantum dot, with the spin filling sequence of the first six holes consistent with Hund's rule. Next, we use pulse-bias spectroscopy to determine that the orbital spectrum is heavily influenced by the strong hole-hole interactions. These results provide a path towards scalable silicon hole-spin qubits.

7.
Phys Rev Lett ; 121(3): 036601, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30085815

RESUMO

Coupled 2D sheets of electrons and holes are predicted to support novel quantum phases. Two experiments of Coulomb drag in electron-hole (e-h) double bilayer graphene (DBLG) have reported an unexplained and puzzling sign reversal of the drag signal. However, we show that this effect is due to the multiband character of DBLG. Our multiband Fermi liquid theory produces excellent agreement and captures the key features of the experimental drag resistance for all temperatures. This demonstrates the importance of multiband effects in DBLG: they have a strong effect not only on superfluidity, but also on the drag.

8.
Phys Rev Lett ; 119(17): 176805, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219474

RESUMO

We investigate zero-bias conductance peaks that arise from coalescing subgap Andreev states, consistent with emerging Majorana zero modes, in hybrid semiconductor-superconductor wires defined in a two-dimensional InAs/Al heterostructure using top-down lithography and gating. The measurements indicate a hard superconducting gap, ballistic tunneling contact, and in-plane critical fields up to 3 T. Top-down lithography allows complex geometries, branched structures, and straightforward scaling to multicomponent devices compared to structures made from assembled nanowires.

9.
Phys Rev Lett ; 119(11): 116803, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28949235

RESUMO

In-plane hole g factors measured in quantum point contacts based on p-type heterostructures strongly depend on the orientation of the magnetic field with respect to the electric current. This effect, first reported a decade ago and confirmed in a number of publications, has remained an open problem. In this work, we present systematic experimental studies to disentangle different mechanisms contributing to the effect and develop the theory which describes it successfully. We show that there is a new mechanism for the anisotropy related to the existence of an additional B_{+}k_{-}^{4}σ_{+} effective Zeeman interaction for holes, which is kinematically different from the standard single Zeeman term B_{-}k_{-}^{2}σ_{+} considered until now.

10.
Phys Rev Lett ; 118(14): 146801, 2017 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-28430471

RESUMO

We investigate the relationship between the Zeeman interaction and the inversion-asymmetry-induced spin-orbit interactions (Rashba and Dresselhaus SOIs) in GaAs hole quantum point contacts. The presence of a strong SOI results in the crossing and anticrossing of adjacent spin-split hole subbands in a magnetic field. We demonstrate theoretically and experimentally that the anticrossing energy gap depends on the interplay between the SOI terms and the highly anisotropic hole g tensor and that this interplay can be tuned by selecting the crystal axis along which the current and magnetic field are aligned. Our results constitute the independent detection and control of the Dresselhaus and Rashba SOIs in hole systems, which could be of importance for spintronics and quantum information applications.

11.
Nanotechnology ; 27(33): 334001, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27389108

RESUMO

We report the fabrication of single and double hole quantum dots using a double-layer-gate design on an undoped accumulation mode [Formula: see text]/GaAs heterostructure. Electrical transport measurements of a single quantum dot show varying addition energies and clear excited states. In addition, the two-level-gate architecture can also be configured into a double quantum dot with tunable inter-dot coupling.

12.
Phys Rev Lett ; 113(23): 236401, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526140

RESUMO

We have performed transport measurements in tilted magnetic fields in a two-dimensional hole system grown on the surface of a (311)A GaAs crystal. A striking asymmetry of Shubnikov-de Haas oscillations occurs upon reversing the in-plane component of the magnetic field along the low-symmetry [2[over ¯]33] axis. As usual, the magnetoconductance oscillations are symmetric with respect to reversal of the in-plane field component aligned with the high-symmetry [011[over ¯]] axis. Our observations demonstrate that an in-plane magnetic field can generate an out-of-plane component of magnetization in a low-symmetry hole system, creating new possibilities for spin manipulation.

13.
Nanotechnology ; 25(37): 375201, 2014 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-25147958

RESUMO

We study charge transport in a monolayer MoS2 nanoflake over a wide range of carrier density, temperature and electric bias. We find that the transport is best described by a percolating picture in which the disorder breaks translational invariance, breaking the system up into a series of puddles, rather than previous pictures in which the disorder is treated as homogeneous and uniform. Our work provides insight to a unified picture of charge transport in monolayer MoS2 nanoflakes and contributes to the development of next-generation MoS2-based devices.

14.
J Phys Condens Matter ; 25(50): 505302, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24275246

RESUMO

We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential conductance at finite source-drain bias. The temperature and magnetic field dependences of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin, and the interference effects which arise from coherent tunnelling of electrons in the quantum dot.


Assuntos
Alumínio/química , Arsenicais/química , Elétrons , Gálio/química , Pontos Quânticos , Transistores Eletrônicos , Transporte de Elétrons , Teste de Materiais
15.
Phys Rev Lett ; 110(14): 146803, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167022

RESUMO

Exciton bound states in solids between electrons and holes are predicted to form a superfluid at high temperatures. We show that by employing atomically thin crystals such as a pair of adjacent bilayer graphene sheets, equilibrium superfluidity of electron-hole pairs should be achievable for the first time. The transition temperatures are well above liquid helium temperatures. Because the sample parameters needed for the device have already been attained in similar graphene devices, our work suggests a new route toward realizing high-temperature superfluidity in existing quality graphene samples.

16.
Nano Lett ; 13(1): 148-52, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23256546

RESUMO

The out-of-plane g-factor g([perpendicular])(*) for quasi two-dimensional (2D) holes in a (100) GaAs heterostructure is studied using a variable width quantum wire. A direct measurement of the Zeeman splitting is performed in a magnetic field applied perpendicular to the 2D plane. We measure an out-of-plane g-factor up to g([perpendicular])(*) = 5, which is larger than previous optical studies of g([perpendicular])(*) and is approaching the long predicted but never experimentally verified out-of-plane g-factor of 7.2 for heavy holes.

17.
Nano Lett ; 12(9): 4953-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22935029

RESUMO

Stacking of two-dimensional electron gases (2DEGs) obtained by δ-doping of Ge and patterned by scanning probe lithography is a promising approach to realize ultrascaled 3D epitaxial circuits, where multiple layers of active electronic components are integrated both vertically and horizontally. We use atom probe tomography and magnetotransport to correlate the real space 3D atomic distribution of dopants in the crystal with the quantum correction to the conductivity observed at low temperatures, probing if closely stacked δ-layers in Ge behave as independent 2DEGs. We find that at a separation of 9 nm the stacked-2DEGs, while interacting, still maintain their individuality in terms of electron transport and show long phase coherence lengths (∼220 nm). Strong vertical electron confinement is crucial to this finding, resulting in an interlayer scattering time much longer (∼1000 × ) than the scattering time within the dopant plane.


Assuntos
Gases/química , Germânio/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Condutividade Elétrica , Transporte de Elétrons , Campos Magnéticos , Teste de Materiais , Tamanho da Partícula , Estatística como Assunto , Temperatura
18.
Phys Rev Lett ; 108(19): 196807, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-23003076

RESUMO

Disorder increasingly affects performance as electronic devices are reduced in size. The ionized dopants used to populate a device with electrons are particularly problematic, leading to unpredictable changes in the behavior of devices such as quantum dots each time they are cooled for use. We show that a quantum dot can be used as a highly sensitive probe of changes in disorder potential and that, by removing the ionized dopants and populating the dot electrostatically, its electronic properties become reproducible with high fidelity after thermal cycling to room temperature. Our work demonstrates that the disorder potential has a significant, perhaps even dominant, influence on the electron dynamics, with important implications for "ballistic" transport in quantum dots.

19.
Nano Lett ; 12(9): 4495-502, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22830617

RESUMO

Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 × 2e(2)/h anomaly. We report on the dependence of the 1D Landé g-factor g and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs and approaching that in InGaAs/InP QPCs. We show that g is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement potential may enable the high g desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.


Assuntos
Eletrônica/instrumentação , Microeletrodos , Nanotecnologia/instrumentação , Semicondutores , Transporte de Elétrons , Desenho de Equipamento , Análise de Falha de Equipamento
20.
J R Soc Interface ; 9(70): 1020-8, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21957119

RESUMO

An emerging strategy for creating self-healing materials relies on embedded vascular networks of microchannels to transport reactive fluids to regions of damage. Here we investigate the use of active pumping for the pressurized delivery of a two-part healing system, allowing a small vascular system to deliver large volumes of healing agent. Different pumping strategies are explored to improve the mixing and subsequent polymerization of healing agents in the damage zone. Significant improvements in the number of healing cycles and in the overall healing efficiency are achieved compared with prior passive schemes that use only capillary forces for the delivery of healing agents. At the same time, the volume of the vascular system required to achieve this superior healing performance is significantly reduced. In the best case, nearly full recovery of fracture toughness is attained throughout 15 cycles of damage and healing, with a vascular network constituting just 0.1 vol% of the specimen.


Assuntos
Materiais Biomiméticos/química , Teste de Materiais/métodos , Pressão , Materiais Biocompatíveis/química , Polímeros , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...