Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3641, 2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36871024

RESUMO

In this work, a multi-resonant metasurface that can be tailored to absorb microwaves at one or more frequencies is explored. Surface shapes based on an 'anchor' motif, incorporating hexagonal, square and triangular-shaped resonant elements, are shown to be readily tailorable to provide a targeted range of microwave responses. A metasurface consisting of an etched copper layer, spaced above a ground plane by a thin (< 1/10th of a wavelength) low-loss dielectric is experimentally characterised. The fundamental resonances of each shaped element are exhibited at 4.1 GHz (triangular), 6.1 GHz (square) and 10.1 GHz (hexagonal), providing the potential for single- and multi-frequency absorption across a range that is of interest to the food industry. Reflectivity measurements of the metasurface demonstrate that the three fundamental absorption modes are largely independent of incident polarization as well as both azimuthal and elevation angles.

2.
Sci Rep ; 11(1): 9045, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33907212

RESUMO

In this work, the electromagnetic response of a mathematically interesting shape-a Möbius strip-is presented, along with a ring resonator for comparison. Both resonators consist of a central lossy dielectric layer bounded by perfectly conducting layers. For the case of the Möbius strips, the computational results show that there are a family of half-integer wavelength modes within the dielectric layer. These additional modes result in increased absorption, and a corresponding reduction in the radar cross section. Interestingly, rotational scans show that these modes can be excited over a large angular range. This investigation gives an understanding of the electromagnetic response of these structures, paving the way for future experiments on Möbius strip resonators.

3.
Nat Commun ; 10(1): 4696, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619673

RESUMO

Magnetic actuation is widely used in engineering specific forms of controlled motion in microfluidic applications. A challenge, however, is how to extract different desired responses from different components in the system using the same external magnetic drive. Using experiments, simulations, and theoretical arguments, we present emergent rotational patterns in an array of identical magnetic rotors under an uniform, oscillating magnetic field. By changing the relative strength of the external field strength versus the dipolar interactions between the rotors, different collective modes are selected by the rotors. When the dipole interaction is dominant the rotors swing upwards or downwards in alternating stripes, reflecting the spin-ice symmetry of the static configuration. For larger spacings, when the external field dominates over the dipolar interactions, the rotors undergo full rotations, with different quarters of the array turning in different directions. Our work sheds light on how collective behaviour can be engineered in magnetic systems.

4.
Sci Rep ; 8(1): 933, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343852

RESUMO

We propose a new class of magnetically actuated pumps and valves that could be incorporated into microfluidic chips with no further external connections. The idea is to repurpose ferromagnetic low Reynolds number swimmers as devices capable of generating fluid flow, by restricting the swimmers' translational degrees of freedom. We experimentally investigate the flow structure generated by a pinned swimmer in different scenarios, such as unrestricted flow around it as well as flow generated in straight, cross-shaped, Y-shaped and circular channels. This demonstrates the feasibility of incorporating the device into a channel and its capability of acting as a pump, valve and flow splitter. Different regimes could be selected by tuning the frequency and amplitude of the external magnetic field driving the swimmer, or by changing the channel orientation with respect to the field. This versatility endows the device with varied functionality which, together with the robust remote control and reproducibility, makes it a promising candidate for several applications.

5.
Sci Rep ; 7: 44142, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276490

RESUMO

Microscopic swimming devices hold promise for radically new applications in lab-on-a-chip and microfluidic technology, diagnostics and drug delivery etc. In this paper, we demonstrate the experimental verification of a new class of autonomous ferromagnetic swimming devices, actuated and controlled solely by an oscillating magnetic field. These devices are based on a pair of interacting ferromagnetic particles of different size and different anisotropic properties joined by an elastic link and actuated by an external time-dependent magnetic field. The net motion is generated through a combination of dipolar interparticle gradient forces, time-dependent torque and hydrodynamic coupling. We investigate the dynamic performance of a prototype (3.6 mm) of the ferromagnetic swimmer in fluids of different viscosity as a function of the external field parameters (frequency and amplitude) and demonstrate stable propulsion over a wide range of Reynolds numbers. We show that the direction of swimming has a dependence on both the frequency and amplitude of the applied external magnetic field, resulting in robust control over the speed and direction of propulsion. This paves the way to fabricating microscale devices for a variety of technological applications requiring reliable actuation and high degree of control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...