Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(6): 1402-1413, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36762504

RESUMO

Oligodendrocytes are highly specialized glial cells characterized by their production of multilayer myelin sheaths that wrap axons to speed up action potential propagation. It is due to their specific role in supporting axons that impairment of myelin structure and function leads to debilitating symptoms in a wide range of degenerative diseases, including Multiple Sclerosis and Leukodystrophies. It is known that myelin damage can be receptor-mediated and recently oligodendrocytes have been shown to express Ca2+ -permeable Transient Receptor Potential Ankyrin-1 (TRPA1) channels, whose activation can result in myelin damage in ischemia. Here, we show, using organotypic cortical slice cultures, that TRPA1 activation, by TRPA1 agonists JT010 and Carvacrol for varying lengths of time, induces myelin damage. Although TRPA1 activation does not appear to affect oligodendrocyte progenitor cell number or proliferation, it prevents myelin formation and after myelination causes internodal shrinking and significant myelin degradation. This does not occur when the TRPA1 antagonist, A967079, is also applied. Of note is that when TRPA1 agonists are applied for either 24 h, 3 days or 7 days, axon integrity appears to be preserved while mature myelinated oligodendrocytes remain but with significantly shortened internodes. These results provide further evidence that TRPA1 inhibition could be protective in demyelination diseases and a promising therapy to prevent demyelination and promote remyelination.


Assuntos
Anquirinas , Doenças Desmielinizantes , Humanos , Anquirinas/metabolismo , Bainha de Mielina/metabolismo , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Oligodendroglia/metabolismo , Neuroglia/metabolismo , Canal de Cátion TRPA1/metabolismo
3.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34577609

RESUMO

Oligodendrocytes produce myelin, which provides insulation to axons and speeds up neuronal transmission. In ischaemic conditions, myelin is damaged, resulting in mental and physical disabilities. Recent evidence suggests that oligodendrocyte damage during ischaemia can be mediated by Transient Receptor Potential Ankyrin-1 (TRPA1), whose activation raises intracellular Ca2+ concentrations and damages compact myelin. Here, we show that TRPA1 is constitutively active in oligodendrocytes and the optic nerve, as the specific TRPA1 antagonist, A-967079, decreases basal oligodendrocyte Ca2+ concentrations and increases the size of the compound action potential (CAP). Conversely, TRPA1 agonists reduce the size of the optic nerve CAP in an A-967079-sensitive manner. These results indicate that glial TRPA1 regulates neuronal excitability in the white matter under physiological as well as pathological conditions. Importantly, we find that inhibition of TRPA1 prevents loss of CAPs during oxygen and glucose deprivation (OGD) and improves the recovery. TRPA1 block was effective when applied before, during, or after OGD, indicating that the TRPA1-mediated damage is occurring during both ischaemia and recovery, but importantly, that therapeutic intervention is possible after the ischaemic insult. These results indicate that TRPA1 has an important role in the brain, and that its block may be effective in treating many white matter diseases.

4.
Neurosci Lett ; 690: 202-209, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30366011

RESUMO

Transient receptor potential (TRP) proteins are a large family of tetrameric non-selective cation channels that are widely expressed in the grey and white matter of the CNS, and are increasingly considered as potential therapeutic targets in brain disorders. Here we briefly review the evidence for TRP channel expression in glial cells and their possible role in both glial cell physiology and stroke. Despite their contribution to important functions, our understanding of the roles of TRP channels in glia is still in its infancy. The evidence reviewed here indicates that further investigation is needed to determine whether TRP channel inhibition can decrease damage or increase repair in stroke and other diseases affecting the white matter.


Assuntos
Isquemia/fisiopatologia , Canais de Potencial de Receptor Transitório/fisiologia , Substância Branca/fisiologia , Animais , Humanos , Neuroglia/fisiologia
5.
Proc Natl Acad Sci U S A ; 115(7): E1608-E1617, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29382767

RESUMO

Microglia, the brain's innate immune cells, have highly motile processes which constantly survey the brain to detect infection, remove dying cells, and prune synapses during brain development. ATP released by tissue damage is known to attract microglial processes, but it is controversial whether an ambient level of ATP is needed to promote constant microglial surveillance in the normal brain. Applying the ATPase apyrase, an enzyme which hydrolyzes ATP and ADP, reduces microglial process ramification and surveillance, suggesting that ambient ATP/ADP maintains microglial surveillance. However, attempting to raise the level of ATP/ADP by blocking the endogenous ecto-ATPase (termed NTPDase1/CD39), which also hydrolyzes ATP/ADP, does not affect the cells' ramification or surveillance, nor their membrane currents, which respond to even small rises of extracellular [ATP] or [ADP] with the activation of K+ channels. This indicates a lack of detectable ambient ATP/ADP and ecto-ATPase activity, contradicting the results with apyrase. We resolve this contradiction by demonstrating that contamination of commercially available apyrase by a high K+ concentration reduces ramification and surveillance by depolarizing microglia. Exposure to the same K+ concentration (without apyrase added) reduced ramification and surveillance as with apyrase. Dialysis of apyrase to remove K+ retained its ATP-hydrolyzing activity but abolished the microglial depolarization and decrease of ramification produced by the undialyzed enzyme. Thus, applying apyrase affects microglia by an action independent of ATP, and no ambient purinergic signaling is required to maintain microglial ramification and surveillance. These results also have implications for hundreds of prior studies that employed apyrase to hydrolyze ATP/ADP.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Microglia/enzimologia , Difosfato de Adenosina/metabolismo , Animais , Apirase/metabolismo , Encéfalo/enzimologia , Encéfalo/fisiologia , Feminino , Masculino , Microglia/química , Microglia/fisiologia , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley
6.
Elife ; 62017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28608780

RESUMO

Myelin, made by oligodendrocytes, is essential for rapid information transfer in the central nervous system. Oligodendrocyte precursors (OPs) receive glutamatergic synaptic input from axons but how this affects their development is unclear. Murine OPs in white matter express AMPA receptor (AMPAR) subunits GluA2, GluA3 and GluA4. We generated mice in which OPs lack both GluA2 and GluA3, or all three subunits GluA2/3/4, which respectively reduced or abolished AMPAR-mediated input to OPs. In both double- and triple-knockouts OP proliferation and number were unchanged but ~25% fewer oligodendrocytes survived in the subcortical white matter during development. In triple knockouts, this shortfall persisted into adulthood. The oligodendrocyte deficit resulted in ~20% fewer myelin sheaths but the average length, number and thickness of myelin internodes made by individual oligodendrocytes appeared normal. Thus, AMPAR-mediated signalling from active axons stimulates myelin production in developing white matter by enhancing oligodendrocyte survival, without influencing myelin synthesis per se.


Assuntos
Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/fisiologia , Receptores de AMPA/metabolismo , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Camundongos , Camundongos Knockout , Receptores de AMPA/genética
7.
Glia ; 65(2): 309-321, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27796063

RESUMO

Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in Sox10-positive oligodendrocytes, that endogenously released GABA, acting on GABAA receptors, greatly reduces the number of oligodendrocyte lineage cells. The decrease in oligodendrocyte number correlates with a reduction in the amount of myelination but also an increase in internode length, a parameter previously thought to be set by the axon diameter or to be a property intrinsic to oligodendrocytes. Importantly, while TTX block of neuronal activity had no effect on oligodendrocyte lineage cell number when applied alone, it was able to completely abolish the effect of blocking GABAA receptors, suggesting that control of myelination by endogenous GABA may require a permissive factor to be released from axons. In contrast, block of AMPA/KA receptors had no effect on oligodendrocyte lineage cell number or myelination. These results imply that, during development, GABA can act as a local environmental cue to control myelination and thus influence the conduction velocity of action potentials within the CNS. GLIA 2017;65:309-321.


Assuntos
Axônios/fisiologia , Córtex Cerebral/citologia , Bainha de Mielina/metabolismo , Oligodendroglia/fisiologia , Organogênese/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Axônios/efeitos dos fármacos , Axônios/ultraestrutura , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Córtex Cerebral/fisiologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Camundongos , Camundongos Transgênicos , Bainha de Mielina/ultraestrutura , Neurônios/citologia , Neurônios/efeitos dos fármacos , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/ultraestrutura , Técnicas de Cultura de Órgãos , Organogênese/efeitos dos fármacos , Quinoxalinas/farmacologia , Receptores de GABA/genética , Receptores de GABA/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/genética , Tetrodotoxina/farmacologia , Ácido gama-Aminobutírico/farmacologia
8.
Nature ; 529(7587): 523-7, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26760212

RESUMO

The myelin sheaths wrapped around axons by oligodendrocytes are crucial for brain function. In ischaemia myelin is damaged in a Ca(2+)-dependent manner, abolishing action potential propagation. This has been attributed to glutamate release activating Ca(2+)-permeable N-methyl-D-aspartate (NMDA) receptors. Surprisingly, we now show that NMDA does not raise the intracellular Ca(2+) concentration ([Ca(2+)]i) in mature oligodendrocytes and that, although ischaemia evokes a glutamate-triggered membrane current, this is generated by a rise of extracellular [K(+)] and decrease of membrane K(+) conductance. Nevertheless, ischaemia raises oligodendrocyte [Ca(2+)]i, [Mg(2+)]i and [H(+)]i, and buffering intracellular pH reduces the [Ca(2+)]i and [Mg(2+)]i increases, showing that these are evoked by the rise of [H(+)]i. The H(+)-gated [Ca(2+)]i elevation is mediated by channels with characteristics of TRPA1, being inhibited by ruthenium red, isopentenyl pyrophosphate, HC-030031, A967079 or TRPA1 knockout. TRPA1 block reduces myelin damage in ischaemia. These data suggest that TRPA1-containing ion channels could be a therapeutic target in white matter ischaemia.


Assuntos
Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Cálcio/metabolismo , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Prótons , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sinalização do Cálcio/efeitos dos fármacos , Condutividade Elétrica , Feminino , Concentração de Íons de Hidrogênio , Magnésio/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina/efeitos dos fármacos , N-Metilaspartato/metabolismo , N-Metilaspartato/farmacologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Potássio/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/deficiência , Canais de Potencial de Receptor Transitório/genética , Substância Branca/metabolismo , Substância Branca/patologia
9.
Nature ; 508(7494): 55-60, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24670647

RESUMO

Increases in brain blood flow, evoked by neuronal activity, power neural computation and form the basis of BOLD (blood-oxygen-level-dependent) functional imaging. Whether blood flow is controlled solely by arteriole smooth muscle, or also by capillary pericytes, is controversial. We demonstrate that neuronal activity and the neurotransmitter glutamate evoke the release of messengers that dilate capillaries by actively relaxing pericytes. Dilation is mediated by prostaglandin E2, but requires nitric oxide release to suppress vasoconstricting 20-HETE synthesis. In vivo, when sensory input increases blood flow, capillaries dilate before arterioles and are estimated to produce 84% of the blood flow increase. In pathology, ischaemia evokes capillary constriction by pericytes. We show that this is followed by pericyte death in rigor, which may irreversibly constrict capillaries and damage the blood-brain barrier. Thus, pericytes are major regulators of cerebral blood flow and initiators of functional imaging signals. Prevention of pericyte constriction and death may reduce the long-lasting blood flow decrease that damages neurons after stroke.


Assuntos
Capilares/citologia , Circulação Cerebrovascular/fisiologia , Pericitos/fisiologia , Animais , Arteríolas/fisiologia , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/fisiopatologia , Isquemia Encefálica/patologia , Capilares/efeitos dos fármacos , Morte Celular , Cerebelo/irrigação sanguínea , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/citologia , Circulação Cerebrovascular/efeitos dos fármacos , Dinoprostona/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Neuroimagem Funcional , Ácido Glutâmico/farmacologia , Ácidos Hidroxieicosatetraenoicos/biossíntese , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Pericitos/citologia , Pericitos/efeitos dos fármacos , Pericitos/patologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores de Glutamato/metabolismo , Transdução de Sinais/efeitos dos fármacos , Acidente Vascular Cerebral/patologia , Vasoconstrição , Vasodilatação/efeitos dos fármacos
10.
Nat Protoc ; 9(2): 323-36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24434801

RESUMO

The cerebral circulation is highly specialized, both structurally and functionally, and it provides a fine-tuned supply of oxygen and nutrients to active regions of the brain. Our understanding of blood flow regulation by cerebral arterioles has evolved rapidly. Recent work has opened new avenues in microvascular research; for example, it has been demonstrated that contractile pericytes found on capillary walls induce capillary diameter changes in response to neurotransmitters, suggesting that pericytes could have a role in neurovascular coupling. This concept is at odds with traditional models of brain blood flow regulation, which assume that only arterioles control cerebral blood flow. The investigation of mechanisms underlying neurovascular coupling at the capillary level requires a range of approaches, which involve unique technical challenges. Here we provide detailed protocols for the successful physiological and immunohistochemical study of pericytes and capillaries in brain slices and isolated retinae, allowing investigators to probe the role of capillaries in neurovascular coupling. This protocol can be completed within 6-8 h; however, immunohistochemical experiments may take 3-6 d.


Assuntos
Barreira Hematorretiniana/ultraestrutura , Encéfalo/irrigação sanguínea , Imuno-Histoquímica/métodos , Microvasos/ultraestrutura , Pericitos/ultraestrutura , Animais , Encéfalo/citologia , Camundongos , Microscopia de Fluorescência/métodos , Microscopia de Interferência/métodos , Modelos Biológicos , Técnicas de Patch-Clamp
11.
J Neurosci ; 32(24): 8173-85, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22699898

RESUMO

Oligodendrocyte progenitor cells (OPCs) in the postnatal mouse corpus callosum (CC) and motor cortex (Ctx) reportedly generate only oligodendrocytes (OLs), whereas those in the piriform cortex may also generate neurons. OPCs have also been subdivided based on their expression of voltage-gated ion channels, ability to respond to neuronal activity, and proliferative state. To determine whether OPCs in the piriform cortex have inherently different physiological properties from those in the CC and Ctx, we studied acute brain slices from postnatal transgenic mice in which GFP expression identifies OL lineage cells. We whole-cell patch clamped GFP-expressing (GFP(+)) cells within the CC, Ctx, and anterior piriform cortex (aPC) and used prelabeling with 5-ethynyl-2'-deoxyuridine (EdU) to assess cell proliferation. After recording, slices were immunolabeled and OPCs were defined by strong expression of NG2. NG2(+) OPCs in the white and gray matter proliferated and coexpressed PDGFRα and voltage-gated Na(+) channels (I(Na)). Approximately 70% of OPCs were capable of generating regenerative depolarizations. In addition to OLIG2(+) NG2(+) I(Na)(+) OPCs and OLIG2(+) NG2(neg) I(Na)(neg) OLs, we identified cells with low levels of NG2 limited to the soma or the base of some processes. These cells had a significantly reduced I(Na) and a reduced ability to incorporate EdU when compared with OPCs and probably correspond to early differentiating OLs. By combining EdU labeling and lineage tracing using Pdgfrα-CreER(T2) : R26R-YFP transgenic mice, we double labeled OPCs and traced their fate in the postnatal brain. These OPCs generated OLs but did not generate neurons in the aPC or elsewhere at any time that we examined.


Assuntos
Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Corpo Caloso/citologia , Córtex Motor/citologia , Condutos Olfatórios/citologia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Antígenos/metabolismo , Proliferação de Células , Corpo Caloso/metabolismo , Feminino , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Transgênicos , Córtex Motor/metabolismo , Condutos Olfatórios/metabolismo , Oligodendroglia/metabolismo , Proteoglicanas/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Canais de Sódio/metabolismo , Células-Tronco/metabolismo
12.
J Neurosci ; 31(2): 538-48, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21228163

RESUMO

In the gray matter of the brain, astrocytes have been suggested to export lactate (derived from glucose or glycogen) to neurons to power their mitochondria. In the white matter, lactate can support axon function in conditions of energy deprivation, but it is not known whether lactate acts by preserving energy levels in axons or in oligodendrocytes, the myelinating processes of which are damaged rapidly in low energy conditions. Studies of cultured cells suggest that oligodendrocytes are the cell type in the brain that consumes lactate at the highest rate, in part to produce membrane lipids presumably for myelin. Here, we use pH imaging to show that oligodendrocytes in the white matter of the rat cerebellum and corpus callosum take up lactate via monocarboxylate transporters (MCTs), which we identify as MCT1 by confocal immunofluorescence and electron microscopy. Using cultured slices of developing cerebral cortex from mice in which oligodendrocyte lineage cells express GFP (green fluorescent protein) under the control of the Sox10 promoter, we show that a low glucose concentration reduces the number of oligodendrocyte lineage cells and myelination. Myelination is rescued when exogenous l-lactate is supplied. Thus, lactate can support oligodendrocyte development and myelination. In CNS diseases involving energy deprivation at times of myelination or remyelination, such as periventricular leukomalacia leading to cerebral palsy, stroke, and secondary ischemia after spinal cord injury, lactate transporters in oligodendrocytes may play an important role in minimizing the inhibition of myelination that occurs.


Assuntos
Encéfalo/metabolismo , Glucose/metabolismo , Ácido Láctico/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Animais , Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Transgênicos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Simportadores/metabolismo , Técnicas de Cultura de Tecidos
13.
Artigo em Inglês | MEDLINE | ID: mdl-20725515

RESUMO

Because regional blood flow increases in association with the increased metabolic demand generated by localized increases in neural activity, functional imaging researchers often assume that changes in blood flow are an accurate read-out of changes in underlying neural activity. An understanding of the mechanisms that link changes in neural activity to changes in blood flow is crucial for assessing the validity of this assumption, and for understanding the processes that can go wrong during disease states such as ischaemic stroke. Many studies have investigated the mechanisms of neurovascular regulation in arterioles but other evidence suggests that blood flow regulation can also occur in capillaries, because of the presence of contractile cells, pericytes, on the capillary wall. Here we review the evidence that pericytes can modulate capillary diameter in response to neuronal activity and assess the likely importance of neurovascular regulation at the capillary level for functional imaging experiments. We also discuss evidence suggesting that pericytes are particularly sensitive to damage during pathological insults such as ischaemia, Alzheimer's disease and diabetic retinopathy, and consider the potential impact that pericyte dysfunction might have on the development of therapeutic interventions and on the interpretation of functional imaging data in these disorders.

14.
Nat Rev Neurosci ; 11(4): 227-38, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20300101

RESUMO

In the past 20 years, an extra layer of information processing, in addition to that provided by neurons, has been proposed for the CNS. Neuronally evoked increases of the intracellular calcium concentration in astrocytes have been suggested to trigger exocytotic release of the 'gliotransmitters' glutamate, ATP and D-serine. These are proposed to modulate neuronal excitability and transmitter release, and to have a role in diseases as diverse as stroke, epilepsy, schizophrenia, Alzheimer's disease and HIV infection. However, there is intense controversy about whether astrocytes can exocytose transmitters in vivo. Resolving this issue would considerably advance our understanding of brain function.


Assuntos
Astrócitos/metabolismo , Exocitose , Neurotransmissores/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Morte Celular/fisiologia , Condutividade Elétrica , Ácido Glutâmico/metabolismo , Humanos , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo , Sinapses/fisiologia , Proteínas Vesiculares de Transporte de Glutamato/metabolismo
15.
Brain ; 132(Pt 6): 1496-508, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19383832

RESUMO

Elevations of the levels of N-acetyl-aspartyl-glutamate (NAAG) and N-acetyl-aspartate (NAA) are associated with myelin loss in the leucodystrophies Canavan's disease and Pelizaeus-Merzbacher-like disease. NAAG and NAA can activate and antagonize neuronal N-methyl-D-aspartate (NMDA) receptors, and also act on group II metabotropic glutamate receptors. Oligodendrocytes and their precursors have recently been shown to express NMDA receptors, and activation of these receptors in ischaemia leads to the death of oligodendrocyte precursors and the loss of myelin. This raises the possibility that the failure to develop myelin, or demyelination, occurring in the leucodystrophies could reflect an action of NAAG or NAA on oligodendrocyte NMDA receptors. However, since the putative subunit composition of NMDA receptors on oligodendrocytes differs from that of neuronal NMDA receptors, the effects of NAAG and NAA on them are unknown. We show that NAAG, but not NAA, evokes an inward membrane current in cerebellar white matter oligodendrocytes, which is reduced by NMDA receptor block (but not by block of metabotropic glutamate receptors). The size of the current evoked by NAAG, relative to that evoked by NMDA, was much smaller in oligodendrocytes than in neurons, and NAAG induced a rise in [Ca(2+)](i) in neurons but not in oligodendrocytes. These differences in the effect of NAAG on oligodendrocytes and neurons may reflect the aforementioned difference in receptor subunit composition. In addition, as a major part of the response in oligodendrocytes was blocked by tetrodotoxin (TTX), much of the NAAG-evoked current in oligodendrocytes is a secondary consequence of activating neuronal NMDA receptors. Six hours exposure to 1 mM NAAG did not lead to the death of cells in the white matter. We conclude that an action of NAAG on oligodendrocyte NMDA receptors is unlikely to be a major contributor to white matter damage in the leucodystrophies.


Assuntos
Ácido Aspártico/análogos & derivados , Cerebelo/efeitos dos fármacos , Dipeptídeos/farmacologia , Oligodendroglia/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Ácido Aspártico/farmacologia , Cálcio/metabolismo , Doença de Canavan/metabolismo , Doença de Canavan/patologia , Cerebelo/metabolismo , Cerebelo/fisiologia , Potenciais Evocados/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Hidrólise/efeitos dos fármacos , Oligodendroglia/fisiologia , Técnicas de Patch-Clamp , Doença de Pelizaeus-Merzbacher/metabolismo , Doença de Pelizaeus-Merzbacher/patologia , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo , Técnicas de Cultura de Tecidos
16.
Nat Neurosci ; 11(4): 450-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18311136

RESUMO

A defining feature of glial cells has been their inability to generate action potentials. We show here that there are two distinct types of morphologically identical oligodendrocyte precursor glial cells (OPCs) in situ in rat CNS white matter. One type expresses voltage-gated sodium and potassium channels, generates action potentials when depolarized and senses its environment by receiving excitatory and inhibitory synaptic input from axons. The other type lacks action potentials and synaptic input. We found that when OPCs suffered glutamate-mediated damage, as occurs in cerebral palsy, stroke and spinal cord injury, the action potential-generating OPCs were preferentially damaged, as they expressed more glutamate receptors, and received increased spontaneous glutamatergic synaptic input in ischemia. These data challenge the idea that only neurons generate action potentials in the CNS and imply that the development of therapies for demyelinating disorders will require defining which OPC type can carry out remyelination.


Assuntos
Potenciais de Ação/fisiologia , Comunicação Celular/fisiologia , Fibras Nervosas Mielinizadas/metabolismo , Oligodendroglia/classificação , Transmissão Sináptica/fisiologia , Animais , Antígenos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Glutamatos/farmacologia , Técnicas In Vitro , Proteínas do Tecido Nervoso/metabolismo , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia/metabolismo , Técnicas de Patch-Clamp , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteoglicanas/metabolismo , Ratos , Receptores de Glutamato/efeitos dos fármacos , Receptores de Glutamato/metabolismo , Canais de Sódio/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo
17.
Glia ; 56(2): 233-40, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18046734

RESUMO

Damage to oligodendrocytes caused by glutamate release contributes to mental or physical handicap in periventricular leukomalacia, spinal cord injury, multiple sclerosis, and stroke, and has been attributed to activation of AMPA/kainate receptors. However, glutamate also activates unusual NMDA receptors in oligodendrocytes, which can generate an ion influx even at the resting potential in a physiological [Mg2+]. Here, we show that the clinically licensed NMDA receptor antagonist memantine blocks oligodendrocyte NMDA receptors at concentrations achieved therapeutically. Simulated ischaemia released glutamate which activated NMDA receptors, as well as AMPA/kainate receptors, on mature and precursor oligodendrocytes. Although blocking AMPA/kainate receptors alone during ischaemia had no effect, combining memantine with an AMPA/kainate receptor blocker, or applying the NMDA blocker MK-801 alone, improved recovery of the action potential in myelinated axons after the ischaemia. These data suggest NMDA receptor blockers as a potentially useful treatment for some white matter diseases and define conditions under which these blockers may be useful therapeutically. Our results highlight the importance of developing new antagonists selective for oligodendrocyte NMDA receptors based on their difference in subunit structure from most neuronal NMDA receptors.


Assuntos
Isquemia Encefálica/patologia , Sistema Nervoso Central/patologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Oligodendroglia/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Isquemia Encefálica/tratamento farmacológico , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Agonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Memantina/farmacologia , Proteína Básica da Mielina/metabolismo , N-Metilaspartato/farmacologia , Técnicas de Patch-Clamp/métodos , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA