Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(3): 033602, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37540849

RESUMO

Large-momentum-transfer (LMT) atom interferometers using elastic Bragg scattering on light waves are among the most precise quantum sensors to date. To advance their accuracy from the mrad to the µrad regime, it is necessary to understand the rich phenomenology of the Bragg interferometer, which differs significantly from that of a standard two-mode interferometer. We develop an analytic model for the interferometer signal and demonstrate its accuracy using comprehensive numerical simulations. Our analytic treatment allows the determination of the atomic projection noise limit of a LMT Bragg interferometer and provides the means to saturate this limit. It affords accurate knowledge of the systematic phase errors as well as their suppression by 2 orders of magnitude down to a few µrad using appropriate light-pulse parameters.

2.
Phys Rev Lett ; 123(26): 260503, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951443

RESUMO

Microwave trapped-ion quantum logic gates avoid spontaneous emission as a fundamental source of decoherence. However, microwave two-qubit gates are still slower than laser-induced gates and hence more sensitive to fluctuations and noise of the motional mode frequency. We propose and implement amplitude-shaped gate drives to obtain resilience to such frequency changes without increasing the pulse energy per gate operation. We demonstrate the resilience by noise injection during a two-qubit entangling gate with ^{9}Be^{+} ion qubits. In the absence of injected noise, amplitude modulation gives an operation infidelity in the 10^{-3} range.

3.
Phys Rev Lett ; 116(1): 013002, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26799016

RESUMO

Optical clocks based on ensembles of trapped ions promise record frequency accuracy with good short-term stability. Most suitable ion species lack closed transitions, so the clock signal must be read out indirectly by transferring the quantum state of the clock ions to cotrapped logic ions of a different species. Existing methods of quantum logic readout require a linear overhead in either time or the number of logic ions. Here we describe a quantum algorithmic readout whose overhead scales logarithmically with the number of clock ions in both of these respects. The scheme allows a quantum nondemolition readout of the number of excited clock ions using a single multispecies gate operation which can also be used in other areas of ion trap technology such as quantum information processing, quantum simulations, metrology, and precision spectroscopy.

4.
Nat Commun ; 6: 8984, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612105

RESUMO

In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.

5.
Phys Rev Lett ; 109(25): 253601, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23368459

RESUMO

In the past few years, coupling strengths between light and mechanical motion in optomechanical setups have improved by orders of magnitude. Here we show that, in the standard setup under continuous laser illumination, the steady state of the mechanical oscillator can develop a nonclassical, strongly negative Wigner density if the optomechanical coupling is comparable to or larger than the optical decay rate and the mechanical frequency. Because of its robustness, such a Wigner density can be mapped using optical homodyne tomography. This feature is observed near the onset of the instability towards self-induced oscillations. We show that there are also distinct signatures in the photon-photon correlation function g(2)(t) in that regime, including oscillations decaying on a time scale not only much longer than the optical cavity decay time but even longer than the mechanical decay time.

6.
Proc Natl Acad Sci U S A ; 108(39): 16182-7, 2011 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-21900608

RESUMO

Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscillators remains a significant challenge. Here we propose a scheme to realize quantum state tomography, squeezing, and state purification of a mechanical resonator using short optical pulses. The scheme presented allows observation of mechanical quantum features despite preparation from a thermal state and is shown to be experimentally feasible using optical microcavities. Our framework thus provides a promising means to explore the quantum nature of massive mechanical oscillators and can be applied to other systems such as trapped ions.

7.
Phys Rev Lett ; 103(6): 063005, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19792563

RESUMO

We propose and analyze a setup to achieve strong coupling between a single trapped atom and a mechanical oscillator. The interaction between the motion of the atom and the mechanical oscillator is mediated by a quantized light field in a laser driven high-finesse cavity. In particular, we show that high fidelity transfer of quantum states between the atom and the mechanical oscillator is in reach for existing or near future experimental parameters. Our setup provides the basic toolbox from atomic physics for coherent manipulation, preparation, and measurement of micromechanical and nanomechanical oscillators.

8.
Phys Rev Lett ; 102(2): 020501, 2009 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-19257254

RESUMO

We suggest interfacing nanomechanical systems via an optical quantum bus to atomic ensembles, for which means of high precision state preparation, manipulation, and measurement are available. This allows, in particular, for a quantum nondemolition Bell measurement, projecting the coupled system, atomic-ensemble-nanomechanical resonator, into an entangled EPR state. The entanglement is observable even for nanoresonators initially well above their ground states and can be utilized for teleportation of states from an atomic ensemble to the mechanical system.

9.
Phys Rev Lett ; 94(15): 150503, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15904127

RESUMO

We consider the storage and transmission of a Gaussian distributed set of coherent states of continuous variable systems. We prove a limit on the average fidelity achievable when the states are transmitted or stored by a classical channel, i.e., a measure and repreparation scheme which sends or stores classical information only. The obtained bound is tight and serves as a benchmark which has to be surpassed by quantum channels in order to outperform any classical strategy. The success in experimental demonstrations of quantum memories as well as quantum teleportation has to be judged on this footing.

10.
Phys Rev Lett ; 88(23): 237902, 2002 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-12059400

RESUMO

We introduce the interaction cost of a nonlocal gate as the minimal time of interaction required to perform the gate when assisting the process with fast local unitaries. This cost, of interest both in the areas of quantum control and quantum information, depends on the specific interaction, and allows one to compare in an operationally meaningful manner any two nonlocal gates. In the case of a two-qubit system, an analytical expression for the interaction cost of any unitary operation given any coupling Hamiltonian is obtained. One gate may be more time consuming than another for any possible interaction. This defines a partial order structure in the set of nonlocal gates, that compares their degree of nonlocality. We analytically characterize this partial order in a region of the set of two-qubit gates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...