Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Eur Respir J ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575161

RESUMO

BACKGROUND: Some individuals experience prolonged illness after acute COVID-19. We assessed whether pre-infection symptoms affected post-COVID illness duration. METHODS: Survival analysis was performed in adults (n=23 452) with community-managed SARC-CoV-2 infection prospectively self-logging data through the ZOE COVID Symptom Study app, at least weekly, from 8 weeks before to 12 weeks after COVID-19 onset, conditioned on presence versus absence of baseline symptoms (4-8 weeks before COVID-19). A case-control study was performed in 1350 individuals with long illness (≥8 weeks, 906 [67.1%] with illness ≥12 weeks), matched 1:1 (for age, sex, body mass index, testing week, prior infection, vaccination, smoking, index of multiple deprivation) with 1350 individuals with short illness (<4 weeks). Baseline symptoms were compared between the two groups; and against post-COVID symptoms. RESULTS: Individuals reporting baseline symptoms had longer post-COVID symptom duration (from 10 to 15 days) with baseline fatigue nearly doubling duration. Two-thirds (910 of 1350 [67.4%]) of individuals with long illness were asymptomatic beforehand. However, 440 (32.6%) had baseline symptoms, versus 255 (18.9%) of 1350 individuals with short illness (p<0.0001). Baseline symptoms increased the odds ratio for long illness (2.14 [CI: 1.78; 2.57]). Prior comorbidities were more common in individuals with long versus short illness. In individuals with long illness, baseline symptomatic (versus asymptomatic) individuals were more likely to be female, younger, and have prior comorbidities; and baseline and post-acute symptoms and symptom burden correlated strongly. CONCLUSIONS: Individuals experiencing symptoms before COVID-19 have longer illness duration and increased odds of long illness. However, many individuals with long illness are well before SARS-CoV-2 infection.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38393374

RESUMO

Epilepsy is one of the most frequent neurological conditions with an estimated prevalence of more than 50 million people worldwide and an annual incidence of two million. Although pharmacotherapy with anti-seizure medication (ASM) is the treatment of choice, ~30% of patients with epilepsy do not respond to ASM and become drug resistant. Focal epilepsy is the most frequent form of epilepsy. In patients with drug-resistant focal epilepsy, epilepsy surgery is a treatment option depending on the localisation of the seizure focus for seizure relief or seizure freedom with consecutive improvement in quality of life. Beside examinations such as scalp video/electroencephalography (EEG) telemetry, structural, and functional magnetic resonance imaging (MRI), which are primary standard tools for the diagnostic work-up and therapy management of epilepsy patients, molecular neuroimaging using different radiopharmaceuticals with single-photon emission computed tomography (SPECT) and positron emission tomography (PET) influences and impacts on therapy decisions. To date, there are no literature-based praxis recommendations for the use of Nuclear Medicine (NM) imaging procedures in epilepsy. The aims of these guidelines are to assist in understanding the role and challenges of radiotracer imaging for epilepsy; to provide practical information for performing different molecular imaging procedures for epilepsy; and to provide an algorithm for selecting the most appropriate imaging procedures in specific clinical situations based on current literature. These guidelines are written and authorized by the European Association of Nuclear Medicine (EANM) to promote optimal epilepsy imaging, especially in the presurgical setting in children, adolescents, and adults with focal epilepsy. They will assist NM healthcare professionals and also specialists such as Neurologists, Neurophysiologists, Neurosurgeons, Psychiatrists, Psychologists, and others involved in epilepsy management in the detection and interpretation of epileptic seizure onset zone (SOZ) for further treatment decision. The information provided should be applied according to local laws and regulations as well as the availability of various radiopharmaceuticals and imaging modalities.

4.
EJNMMI Res ; 13(1): 98, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37964137

RESUMO

BACKGROUND: Brain [18F]FDG PET is used clinically mainly in the presurgical evaluation for epilepsy surgery and in the differential diagnosis of neurodegenerative disorders. While scans are usually interpreted visually on an individual basis, comparison against normative cohorts allows statistical assessment of abnormalities and potentially higher sensitivity for detecting abnormalities. Little work has been done on out-of-sample databases (acquired differently to the patient data). Combination of different databases would potentially allow better power and discrimination. We fully characterised an unpublished healthy control brain [18F]FDG PET database (Marseille, n = 60, ages 21-78 years) and compared it to another publicly available database (MRXFDG, n = 37, ages 23-65 years). We measured and then harmonised spatial resolution and global values. A collection of patient scans (n = 34, 13-48 years) with histologically confirmed focal cortical dysplasias (FCDs) obtained on three generations of scanners was used to estimate abnormality detection rates using standard software (statistical parametric mapping, SPM12). RESULTS: Regional SUVs showed similar patterns, but global values and resolutions were different as expected. Detection rates for the FCDs were 50% for comparison with the Marseille database and 53% for MRXFDG. Simply combining both databases worsened the detection rate to 41%. After harmonisation of spatial resolution, using a full factorial design matrix to accommodate global differences, and leaving out controls older than 60 years, we achieved detection rates of up to 71% for both databases combined. Detection rates were similar across the three scanner types used for patients, and high for patients whose MRI had been normal (n = 10/11). CONCLUSIONS: As expected, global and regional data characteristics are database specific. However, our work shows the value of increasing database size and suggests ways in which database differences can be overcome. This may inform analysis via traditional statistics or machine learning, and clinical implementation.

5.
J Infect ; 87(6): 506-515, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37777159

RESUMO

BACKGROUND: Booster COVID-19 vaccines have shown efficacy in clinical trials and effectiveness in real-world data against symptomatic and severe illness. However, some people still become infected with SARS-CoV-2 following a third (booster) vaccination. This study describes the characteristics of SARS-CoV-2 illness following a third vaccination and assesses the risk of progression to symptomatic disease in SARS-CoV-2 infected individuals with time since vaccination. METHODS: This prospective, community-based, case-control study used data from UK-based, adult (≥18 years) users of the COVID Symptom Study mobile application, self-reporting a first positive COVID-19 test between June 1, 2021 and April 1, 2022. To describe the characteristics of SARS-CoV-2 illness following a third vaccination, we selected cases and controls who had received a third and second dose of monovalent vaccination against COVID-19, respectively, and reported a first positive SARS-CoV-2 test at least 7 days after most recent vaccination. Cases and controls were matched (1:1) based on age, sex, BMI, time between first vaccination and infection, and week of testing. We used logistic regression models (adjusted for age, sex, BMI, level of social deprivation and frailty) to analyse associations of disease severity, overall disease duration, and individual symptoms with booster vaccination status. To assess for potential waning of vaccine effectiveness, we compared disease severity, duration, and symptom profiles of individuals testing positive within 3 months of most recent vaccination (reference group) to profiles of individuals infected between 3 and 4, 4-5, and 5-6 months, for both third and second dose. All analyses were stratified by time period, based on the predominant SARS-CoV-2 variant at time of infection (Delta: June 1, 2021-27 Nov, 2021; Omicron: 20 Dec, 2021-Apr 1, 2022). FINDINGS: During the study period, 50,162 (Delta period) and 162,041 (Omicron) participants reported a positive SARS-CoV-2 test. During the Delta period, infection following three vaccination doses was associated with lower odds of long COVID (symptoms≥ 4 weeks) (OR=0.83, CI[0.50-1.36], p < 0.0001), hospitalisation (OR=0.55, CI[0.39-0.75], p < 0.0001) and severe symptoms (OR=0.36, CI[0.27-0.49], p < 0.0001), and higher odds of asymptomatic infection (OR=3.45, CI[2.86-4.16], p < 0.0001), compared to infection following only two vaccination doses. During the Omicron period, infection following three vaccination doses was associated with lower odds of severe symptoms (OR=0.48, CI[0.42-0.55], p < 0.0001). During the Delta period, infected individuals were less likely to report almost all individual symptoms after a third vaccination. During the Omicron period, individuals were less likely to report most symptoms after a third vaccination, except for upper respiratory symptoms e.g. sneezing (OR=1.40, CI[1.18-1.35], p < 0.0001), runny nose (OR=1.26, CI[1.18-1.35], p < 0.0001), sore throat (OR=1.17, CI[1.10-1.25], p < 0.0001), and hoarse voice (OR=1.13, CI[1.06-1.21], p < 0.0001), which were more likely to be reported. There was evidence of reduced vaccine effectiveness during both Delta and Omicron periods in those infected more than 3 months after their most recent vaccination, with increased reporting of severe symptoms, long duration illness, and most individual symptoms. INTERPRETATION: This study suggests that a third dose of monovalent vaccine may reduce symptoms, severity and duration of SARS-CoV-2 infection following vaccination. For Omicron variants, the third vaccination appears to reduce overall symptom burden but may increase upper respiratory symptoms, potentially due to immunological priming. There is evidence of waning vaccine effectiveness against progression to symptomatic and severe disease and long COVID after three months. Our findings support ongoing booster vaccination promotion amongst individuals at high risk from COVID-19, to reduce severe symptoms and duration of illness, and health system burden. Disseminating knowledge on expected symptoms following booster vaccination may encourage vaccine uptake.


Assuntos
COVID-19 , Adulto , Humanos , Estudos de Casos e Controles , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Síndrome de COVID-19 Pós-Aguda , Estudos Prospectivos , SARS-CoV-2 , Vacinação , Masculino , Feminino
6.
EClinicalMedicine ; 62: 102086, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37654669

RESUMO

Background: Cognitive impairment has been reported after many types of infection, including SARS-CoV-2. Whether deficits following SARS-CoV-2 improve over time is unclear. Studies to date have focused on hospitalised individuals with up to a year follow-up. The presence, magnitude, persistence and correlations of effects in community-based cases remain relatively unexplored. Methods: Cognitive performance (working memory, attention, reasoning, motor control) was assessed in a prospective cohort study of participants from the United Kingdom COVID Symptom Study Biobank between July 12, 2021 and August 27, 2021 (Round 1), and between April 28, 2022 and June 21, 2022 (Round 2). Participants, recruited from the COVID Symptom Study smartphone app, comprised individuals with and without SARS-CoV-2 infection and varying symptom duration. Effects of COVID-19 exposures on cognitive accuracy and reaction time scores were estimated using multivariable ordinary least squares linear regression models weighted for inverse probability of participation, adjusting for potential confounders and mediators. The role of ongoing symptoms after COVID-19 infection was examined stratifying for self-perceived recovery. Longitudinal analysis assessed change in cognitive performance between rounds. Findings: 3335 individuals completed Round 1, of whom 1768 also completed Round 2. At Round 1, individuals with previous positive SARS-CoV-2 tests had lower cognitive accuracy (N = 1737, ß = -0.14 standard deviations, SDs, 95% confidence intervals, CI: -0.21, -0.07) than negative controls. Deficits were largest for positive individuals with ≥12 weeks of symptoms (N = 495, ß = -0.22 SDs, 95% CI: -0.35, -0.09). Effects were comparable to hospital presentation during illness (N = 281, ß = -0.31 SDs, 95% CI: -0.44, -0.18), and 10 years age difference (60-70 years vs. 50-60 years, ß = -0.21 SDs, 95% CI: -0.30, -0.13) in the whole study population. Stratification by self-reported recovery revealed that deficits were only detectable in SARS-CoV-2 positive individuals who did not feel recovered from COVID-19, whereas individuals who reported full recovery showed no deficits. Longitudinal analysis showed no evidence of cognitive change over time, suggesting that cognitive deficits for affected individuals persisted at almost 2 years since initial infection. Interpretation: Cognitive deficits following SARS-CoV-2 infection were detectable nearly two years post infection, and largest for individuals with longer symptom durations, ongoing symptoms, and/or more severe infection. However, no such deficits were detected in individuals who reported full recovery from COVID-19. Further work is needed to monitor and develop understanding of recovery mechanisms for those with ongoing symptoms. Funding: Chronic Disease Research Foundation, Wellcome Trust, National Institute for Health and Care Research, Medical Research Council, British Heart Foundation, Alzheimer's Society, European Union, COVID-19 Driver Relief Fund, French National Research Agency.

7.
Epilepsia Open ; 8(4): 1440-1451, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37602538

RESUMO

OBJECTIVE: Normal interictal [18 F]FDG-PET can be predicted from the corresponding T1w MRI with Generative Adversarial Networks (GANs). A technique we call SIPCOM (Subtraction Interictal PET Co-registered to MRI) can then be used to compare epilepsy patients' predicted and clinical PET. We assessed the ability of SIPCOM to identify the Resection Zone (RZ) in patients with drug-resistant epilepsy (DRE) with reference to visual and statistical parametric mapping (SPM) analysis. METHODS: Patients with complete presurgical work-up and subsequent SEEG and cortectomy were included. RZ localisation, the reference region, was assigned to one of eighteen anatomical brain regions. SIPCOM was implemented using healthy controls to train a GAN. To compare, the clinical PET coregistered to MRI was visually assessed by two trained readers, and a standard SPM analysis was performed. RESULTS: Twenty patients aged 17-50 (32 ± 7.8) years were included, 14 (70%) with temporal lobe epilepsy (TLE). Eight (40%) were MRI-negative. After surgery, 14 patients (70%) had a good outcome (Engel I-II). RZ localisation rate was 60% with SIPCOM vs 35% using SPM (P = 0.015) and vs 85% using visual analysis (P = 0.54). Results were similar for Engel I-II patients, the RZ localisation rate was 64% with SIPCOM vs 36% with SPM. With SIPCOM localisation was correct in 67% in MRI-positive vs 50% in MRI-negative patients, and 64% in TLE vs 43% in extra-TLE. The average number of false-positive clusters was 2.2 ± 1.3 using SIPCOM vs 2.3 ± 3.1 using SPM. All RZs localized with SPM were correctly localized with SIPCOM. In one case, PET and MRI were visually reported as negative, but both SIPCOM and SPM localized the RZ. SIGNIFICANCE: SIPCOM performed better than the reference computer-assisted method (SPM) for RZ detection in a group of operated DRE patients. SIPCOM's impact on epilepsy management needs to be prospectively validated.


Assuntos
Aprendizado Profundo , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Epilepsia , Humanos , Tomografia por Emissão de Pósitrons/métodos , Epilepsia do Lobo Temporal/cirurgia , Fluordesoxiglucose F18 , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Imageamento por Ressonância Magnética
8.
Lancet Digit Health ; 5(7): e421-e434, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202336

RESUMO

BACKGROUND: Self-reported symptom studies rapidly increased understanding of SARS-CoV-2 during the COVID-19 pandemic and enabled monitoring of long-term effects of COVID-19 outside hospital settings. Post-COVID-19 condition presents as heterogeneous profiles, which need characterisation to enable personalised patient care. We aimed to describe post-COVID-19 condition profiles by viral variant and vaccination status. METHODS: In this prospective longitudinal cohort study, we analysed data from UK-based adults (aged 18-100 years) who regularly provided health reports via the Covid Symptom Study smartphone app between March 24, 2020, and Dec 8, 2021. We included participants who reported feeling physically normal for at least 30 days before testing positive for SARS-CoV-2 who subsequently developed long COVID (ie, symptoms lasting longer than 28 days from the date of the initial positive test). We separately defined post-COVID-19 condition as symptoms that persisted for at least 84 days after the initial positive test. We did unsupervised clustering analysis of time-series data to identify distinct symptom profiles for vaccinated and unvaccinated people with post-COVID-19 condition after infection with the wild-type, alpha (B.1.1.7), or delta (B.1.617.2 and AY.x) variants of SARS-CoV-2. Clusters were then characterised on the basis of symptom prevalence, duration, demography, and previous comorbidities. We also used an additional testing sample with additional data from the Covid Symptom Study Biobank (collected between October, 2020, and April, 2021) to investigate the effects of the identified symptom clusters of post-COVID-19 condition on the lives of affected people. FINDINGS: We included 9804 people from the COVID Symptom Study with long COVID, 1513 (15%) of whom developed post-COVID-19 condition. Sample sizes were sufficient only for analyses of the unvaccinated wild-type, unvaccinated alpha variant, and vaccinated delta variant groups. We identified distinct profiles of symptoms for post-COVID-19 condition within and across variants: four endotypes were identified for infections due to the wild-type variant (in unvaccinated people), seven for the alpha variant (in unvaccinated people), and five for the delta variant (in vaccinated people). Across all variants, we identified a cardiorespiratory cluster of symptoms, a central neurological cluster, and a multi-organ systemic inflammatory cluster. These three main clusers were confirmed in a testing sample. Gastrointestinal symptoms clustered in no more than two specific phenotypes per viral variant. INTERPRETATION: Our unsupervised analysis identified different profiles of post-COVID-19 condition, characterised by differing symptom combinations, durations, and functional outcomes. Our classification could be useful for understanding the distinct mechanisms of post-COVID-19 condition, as well as for identification of subgroups of individuals who might be at risk of prolonged debilitation. FUNDING: UK Government Department of Health and Social Care, Chronic Disease Research Foundation, The Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value-Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation, UK Alzheimer's Society, and ZOE.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Estudos Longitudinais , Inteligência Artificial , Pandemias , Síndrome de COVID-19 Pós-Aguda , Estudos Prospectivos
9.
IEEE Trans Radiat Plasma Med Sci ; 7(4): 372-381, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37051163

RESUMO

Positron emission tomography (PET) using a fraction of the usual injected dose would reduce the amount of radioligand needed, as well as the radiation dose to patients and staff, but would compromise reconstructed image quality. For performing the same clinical tasks with such images, a clinical (rather than numerical) image quality assessment is essential. This process can be automated with convolutional neural networks (CNNs). However, the scarcity of clinical quality readings is a challenge. We hypothesise that exploiting easily available quantitative information in pretext learning tasks or using established pre-trained networks could improve CNN performance for predicting clinical assessments with limited data. CNNs were pre-trained to predict injected dose from image patches extracted from eight real patient datasets, reconstructed using between 0.5%-100% of the available data. Transfer learning with seven different patients was used to predict three clinically-scored quality metrics ranging from 0-3: global quality rating, pattern recognition and diagnostic confidence. This was compared to pre-training via a VGG16 network at varying pre-training levels. Pre-training improved test performance for this task: the mean absolute error of 0.53 (compared to 0.87 without pre-training), was within clinical scoring uncertainty. Future work may include using the CNN for novel reconstruction methods performance assessment.

10.
Hum Brain Mapp ; 44(8): 3196-3209, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37052063

RESUMO

The piriform cortex (PC) is located at the junction of the temporal and frontal lobes. It is involved physiologically in olfaction as well as memory and plays an important role in epilepsy. Its study at scale is held back by the absence of automatic segmentation methods on MRI. We devised a manual segmentation protocol for PC volumes, integrated those manually derived images into the Hammers Atlas Database (n = 30) and used an extensively validated method (multi-atlas propagation with enhanced registration, MAPER) for automatic PC segmentation. We applied automated PC volumetry to patients with unilateral temporal lobe epilepsy with hippocampal sclerosis (TLE; n = 174 including n = 58 controls) and to the Alzheimer's Disease Neuroimaging Initiative cohort (ADNI; n = 151, of whom with mild cognitive impairment (MCI), n = 71; Alzheimer's disease (AD), n = 33; controls, n = 47). In controls, mean PC volume was 485 mm3 on the right and 461 mm3 on the left. Automatic and manual segmentations overlapped with a Jaccard coefficient (intersection/union) of ~0.5 and a mean absolute volume difference of ~22 mm3 in healthy controls, ~0.40/ ~28 mm3 in patients with TLE, and ~ 0.34/~29 mm3 in patients with AD. In patients with TLE, PC atrophy lateralised to the side of hippocampal sclerosis (p < .001). In patients with MCI and AD, PC volumes were lower than those of controls bilaterally (p < .001). Overall, we have validated automatic PC volumetry in healthy controls and two types of pathology. The novel finding of early atrophy of PC at the stage of MCI possibly adds a novel biomarker. PC volumetry can now be applied at scale.


Assuntos
Doença de Alzheimer , Epilepsia do Lobo Temporal , Córtex Piriforme , Humanos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
12.
Brain ; 146(6): 2512-2523, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445406

RESUMO

There is a lack of imaging markers revealing the functional characteristics of different brain regions in paediatric dystonia. In this observational study, we assessed the utility of [18F]2-fluoro-2-deoxy-D-glucose (FDG)-PET in understanding dystonia pathophysiology by revealing specific resting awake brain glucose metabolism patterns in different childhood dystonia subgroups. PET scans from 267 children with dystonia being evaluated for possible deep brain stimulation surgery between September 2007 and February 2018 at Evelina London Children's Hospital (ELCH), UK, were examined. Scans without gross anatomical abnormality (e.g. large cysts, significant ventriculomegaly; n = 240) were analysed with Statistical Parametric Mapping (SPM12). Glucose metabolism patterns were examined in the 144/240 (60%) cases with the 10 commonest childhood-onset dystonias, focusing on nine anatomical regions. A group of 39 adult controls was used for comparisons. The genetic dystonias were associated with the following genes: TOR1A, THAP1, SGCE, KMT2B, HPRT1 (Lesch Nyhan disease), PANK2 and GCDH (Glutaric Aciduria type 1). The acquired cerebral palsy (CP) cases were divided into those related to prematurity (CP-Preterm), neonatal jaundice/kernicterus (CP-Kernicterus) and hypoxic-ischaemic encephalopathy (CP-Term). Each dystonia subgroup had distinct patterns of altered FDG-PET uptake. Focal glucose hypometabolism of the pallidi, putamina or both, was the commonest finding, except in PANK2, where basal ganglia metabolism appeared normal. HPRT1 uniquely showed glucose hypometabolism across all nine cerebral regions. Temporal lobe glucose hypometabolism was found in KMT2B, HPRT1 and CP-Kernicterus. Frontal lobe hypometabolism was found in SGCE, HPRT1 and PANK2. Thalamic and brainstem hypometabolism were seen only in HPRT1, CP-Preterm and CP-term dystonia cases. The combination of frontal and parietal lobe hypermetabolism was uniquely found in CP-term cases. PANK2 cases showed a distinct combination of parietal hypermetabolism with cerebellar hypometabolism but intact putaminal-pallidal glucose metabolism. HPRT1, PANK2, CP-kernicterus and CP-preterm cases had cerebellar and insula glucose hypometabolism as well as parietal glucose hypermetabolism. The study findings offer insights into the pathophysiology of dystonia and support the network theory for dystonia pathogenesis. 'Signature' patterns for each dystonia subgroup could be a useful biomarker to guide differential diagnosis and inform personalized management strategies.


Assuntos
Paralisia Cerebral , Distonia , Distúrbios Distônicos , Kernicterus , Adulto , Recém-Nascido , Humanos , Criança , Fluordesoxiglucose F18/metabolismo , Distonia/metabolismo , Kernicterus/complicações , Kernicterus/metabolismo , Encéfalo/metabolismo , Distúrbios Distônicos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Glucose/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
13.
Front Med (Lausanne) ; 9: 1042706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465898

RESUMO

Introduction: [18F]fluorodeoxyglucose ([18F]FDG) brain PET is used clinically to detect small areas of decreased uptake associated with epileptogenic lesions, e.g., Focal Cortical Dysplasias (FCD) but its performance is limited due to spatial resolution and low contrast. We aimed to develop a deep learning-based PET image enhancement method using simulated PET to improve lesion visualization. Methods: We created 210 numerical brain phantoms (MRI segmented into 9 regions) and assigned 10 different plausible activity values (e.g., GM/WM ratios) resulting in 2100 ground truth high quality (GT-HQ) PET phantoms. With a validated Monte-Carlo PET simulator, we then created 2100 simulated standard quality (S-SQ) [18F]FDG scans. We trained a ResNet on 80% of this dataset (10% used for validation) to learn the mapping between S-SQ and GT-HQ PET, outputting a predicted HQ (P-HQ) PET. For the remaining 10%, we assessed Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Root Mean Squared Error (RMSE) against GT-HQ PET. For GM and WM, we computed recovery coefficients (RC) and coefficient of variation (COV). We also created lesioned GT-HQ phantoms, S-SQ PET and P-HQ PET with simulated small hypometabolic lesions characteristic of FCDs. We evaluated lesion detectability on S-SQ and P-HQ PET both visually and measuring the Relative Lesion Activity (RLA, measured activity in the reduced-activity ROI over the standard-activity ROI). Lastly, we applied our previously trained ResNet on 10 clinical epilepsy PETs to predict the corresponding HQ-PET and assessed image quality and confidence metrics. Results: Compared to S-SQ PET, P-HQ PET improved PNSR, SSIM and RMSE; significatively improved GM RCs (from 0.29 ± 0.03 to 0.79 ± 0.04) and WM RCs (from 0.49 ± 0.03 to 1 ± 0.05); mean COVs were not statistically different. Visual lesion detection improved from 38 to 75%, with average RLA decreasing from 0.83 ± 0.08 to 0.67 ± 0.14. Visual quality of P-HQ clinical PET improved as well as reader confidence. Conclusion: P-HQ PET showed improved image quality compared to S-SQ PET across several objective quantitative metrics and increased detectability of simulated lesions. In addition, the model generalized to clinical data. Further evaluation is required to study generalization of our method and to assess clinical performance in larger cohorts.

14.
Nat Neurosci ; 25(11): 1569-1581, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36303070

RESUMO

Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.


Assuntos
Mapeamento Encefálico , Neocórtex , Humanos , Mapeamento Encefálico/métodos , Neocórtex/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/fisiologia , Tomografia por Emissão de Pósitrons , Neurotransmissores
15.
J Psychopharmacol ; 36(9): 1051-1060, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36120998

RESUMO

BACKGROUND: Evidence from post-mortem studies and in vivo imaging studies suggests there may be reduced N-methyl-d-aspartate receptor (NMDAR) levels in the hippocampus in patients with schizophrenia. Other studies have reported increased glutamate in striatum in schizophrenia patients. It has been hypothesised that NMDAR hypofunction leads to the disinhibition of glutamatergic signalling; however, this has not been tested in vivo. METHODS: In this study, we investigated the relationship between hippocampal NMDAR and striatal glutamate using simultaneous positron emission tomography-magnetic resonance (PET-MR) imaging. We recruited 40 volunteers to this cross-sectional study; 21 patients with schizophrenia, all in their first episode of illness, and 19 healthy controls. We measured hippocampal NMDAR availability using the PET ligand [18F]GE179. This was indexed relative to whole brain as the distribution volume ratio (DVR). Striatal glutamatergic indices (glutamate and Glx) were acquired simultaneously, using combined PET-MR proton magnetic resonance spectroscopy (1H-MRS). RESULTS: A total of 33 individuals (15 healthy controls, 18 patients) were included in the analyses (mean (SD) age of controls, 27.31 (4.68) years; mean (SD) age of patients, 24.75 (4.33), 27 male and 6 female). We found an inverse relationship between hippocampal DVR and striatal glutamate levels in people with first-episode psychosis (rho = -0.74, p < 0.001) but not in healthy controls (rho = -0.22, p = 0.44). CONCLUSION: This study show that lower relative NMDAR availability in the hippocampus may drive increased striatal glutamate levels in patients with schizophrenia. Further work is required to determine whether these findings may yield new targets for drug development in schizophrenia.


Assuntos
Ácido Glutâmico , Transtornos Psicóticos , Adulto , Encéfalo/diagnóstico por imagem , Estudos Transversais , Feminino , Humanos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Masculino , Neuroimagem , Tomografia por Emissão de Pósitrons , Transtornos Psicóticos/diagnóstico por imagem , Receptores de N-Metil-D-Aspartato , Adulto Jovem
16.
Epilepsy Res ; 185: 106971, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35810570

RESUMO

The piriform cortex, at the confluence of the temporal and frontal lobes, generates seizures in response to chemical convulsants and electrical stimulation. Resection of more than 50% of the piriform cortex in anterior temporal lobe resection for refractory temporal lobe epilepsy (TLE) was associated with a 16-fold higher chance of seizure freedom. The objectives of the current study were to implement a robust protocol to measure piriform cortex volumes and to quantify the correlation of these volumes with clinical characteristics of TLE. Sixty individuals with unilateral TLE (33 left) and 20 healthy controls had volumetric analysis of left and right piriform cortex and hippocampi. A protocol for segmenting and measuring the volumes of the piriform cortices was implemented, with good inter-rater and test-retest reliability. The right piriform cortex volume was consistently larger than the left piriform cortex in both healthy controls and patients with TLE. In controls, the mean volume of the right piriform cortex was 17.7% larger than the left, and the right piriform cortex extended a mean of 6 mm (Range: -4 to 12) more anteriorly than the left. This asymmetry was also seen in left and right TLE. In TLE patients overall, the piriform cortices were not significantly smaller than in controls. Hippocampal sclerosis was associated with decreased ipsilateral and contralateral piriform cortex volumes. The piriform cortex volumes, both ipsilateral and contralateral to the epileptic temporal lobe, were smaller with a longer duration of epilepsy. There was no significant association between piriform cortex volumes and the frequency of focal seizures with impaired awareness or the number of anti-seizure medications taken. Implementation of robust segmentation will enable consistent neurosurgical resection in anterior temporal lobe surgery for refractory TLE..


Assuntos
Epilepsia do Lobo Temporal , Córtex Piriforme , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/diagnóstico por imagem , Hipocampo/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes , Lobo Temporal
17.
Sci Rep ; 12(1): 10904, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764879

RESUMO

The Delta (B.1.617.2) variant was the predominant UK circulating SARS-CoV-2 strain between May and December 2021. How Delta infection compares with previous variants is unknown. This prospective observational cohort study assessed symptomatic adults participating in the app-based COVID Symptom Study who tested positive for SARS-CoV-2 from May 26 to July 1, 2021 (Delta overwhelmingly the predominant circulating UK variant), compared (1:1, age- and sex-matched) with individuals presenting from December 28, 2020 to May 6, 2021 (Alpha (B.1.1.7) the predominant variant). We assessed illness (symptoms, duration, presentation to hospital) during Alpha- and Delta-predominant timeframes; and transmission, reinfection, and vaccine effectiveness during the Delta-predominant period. 3581 individuals (aged 18 to 100 years) from each timeframe were assessed. The seven most frequent symptoms were common to both variants. Within the first 28 days of illness, some symptoms were more common with Delta versus Alpha infection (including fever, sore throat, and headache) and some vice versa (dyspnoea). Symptom burden in the first week was higher with Delta versus Alpha infection; however, the odds of any given symptom lasting ≥ 7 days was either lower or unchanged. Illness duration ≥ 28 days was lower with Delta versus Alpha infection, though unchanged in unvaccinated individuals. Hospitalisation for COVID-19 was unchanged. The Delta variant appeared more (1.49) transmissible than Alpha. Re-infections were low in all UK regions. Vaccination markedly reduced the risk of Delta infection (by 69-84%). We conclude that COVID-19 from Delta or Alpha infections is similar. The Delta variant is more transmissible than Alpha; however, current vaccines showed good efficacy against disease. This research framework can be useful for future comparisons with new emerging variants.


Assuntos
COVID-19 , Hepatite D , Adulto , COVID-19/epidemiologia , Humanos , Estudos Prospectivos , Reinfecção , SARS-CoV-2/genética
18.
Children (Basel) ; 9(5)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35626830

RESUMO

BACKGROUND: The Delta (B.1.617.2) SARS-CoV-2 variant was the predominant UK circulating strain between May and November 2021. We investigated whether COVID-19 from Delta infection differed from infection with previous variants in children. METHODS: Through the prospective COVID Symptom Study, 109,626 UK school-aged children were proxy-reported between 28 December 2020 and 8 July 2021. We selected all symptomatic children who tested positive for SARS-CoV-2 and were proxy-reported at least weekly, within two timeframes: 28 December 2020 to 6 May 2021 (Alpha (B.1.1.7), the main UK circulating variant) and 26 May to 8 July 2021 (Delta, the main UK circulating variant), with all children unvaccinated (as per national policy at the time). We assessed illness profiles (symptom prevalence, duration, and burden), hospital presentation, and presence of long (≥28 day) illness, and calculated odds ratios for symptoms presenting within the first 28 days of illness. RESULTS: 694 (276 younger (5-11 years), 418 older (12-17 years)) symptomatic children tested positive for SARS-CoV-2 with Alpha infection and 706 (227 younger and 479 older) children with Delta infection. Median illness duration was short with either variant (overall cohort: 5 days (IQR 2-9.75) with Alpha, 5 days (IQR 2-9) with Delta). The seven most prevalent symptoms were common to both variants. Symptom burden over the first 28 days was slightly greater with Delta compared with Alpha infection (in younger children, 3 (IQR 2-5) symptoms with Alpha, 4 (IQR 2-7) with Delta; in older children, 5 (IQR 3-8) symptoms with Alpha, 6 (IQR 3-9) with Delta infection ). The odds of presenting several symptoms were higher with Delta than Alpha infection, including headache and fever. Few children presented to hospital, and long illness duration was uncommon, with either variant. CONCLUSIONS: COVID-19 in UK school-aged children due to SARS-CoV-2 Delta strain B.1.617.2 resembles illness due to the Alpha variant B.1.1.7., with short duration and similar symptom burden.

19.
Lancet ; 399(10335): 1618-1624, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35397851

RESUMO

BACKGROUND: The SARS-CoV-2 variant of concern, omicron, appears to be less severe than delta. We aim to quantify the differences in symptom prevalence, risk of hospital admission, and symptom duration among the vaccinated population. METHODS: In this prospective longitudinal observational study, we collected data from participants who were self-reporting test results and symptoms in the ZOE COVID app (previously known as the COVID Symptoms Study App). Eligible participants were aged 16-99 years, based in the UK, with a body-mass index between 15 and 55 kg/m2, had received at least two doses of any SARS-CoV-2 vaccine, were symptomatic, and logged a positive symptomatic PCR or lateral flow result for SARS-CoV-2 during the study period. The primary outcome was the likelihood of developing a given symptom (of the 32 monitored in the app) or hospital admission within 7 days before or after the positive test in participants infected during omicron prevalence compared with those infected during delta prevalence. FINDINGS: Between June 1, 2021, and Jan 17, 2022, we identified 63 002 participants who tested positive for SARS-CoV-2 and reported symptoms in the ZOE app. These patients were matched 1:1 for age, sex, and vaccination dose, across two periods (June 1 to Nov 27, 2021, delta prevalent at >70%; n=4990, and Dec 20, 2021, to Jan 17, 2022, omicron prevalent at >70%; n=4990). Loss of smell was less common in participants infected during omicron prevalence than during delta prevalence (16·7% vs 52·7%, odds ratio [OR] 0·17; 95% CI 0·16-0·19, p<0·001). Sore throat was more common during omicron prevalence than during delta prevalence (70·5% vs 60·8%, 1·55; 1·43-1·69, p<0·001). There was a lower rate of hospital admission during omicron prevalence than during delta prevalence (1·9% vs 2·6%, OR 0·75; 95% CI 0·57-0·98, p=0·03). INTERPRETATION: The prevalence of symptoms that characterise an omicron infection differs from those of the delta SARS-CoV-2 variant, apparently with less involvement of the lower respiratory tract and reduced probability of hospital admission. Our data indicate a shorter period of illness and potentially of infectiousness which should impact work-health policies and public health advice. FUNDING: Wellcome Trust, ZOE, National Institute for Health Research, Chronic Disease Research Foundation, National Institutes of Health, and Medical Research Council.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Vacinas contra COVID-19 , Hospitais , Humanos , Prevalência , Estudos Prospectivos , SARS-CoV-2/genética
20.
Lancet Infect Dis ; 22(1): 43-55, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34480857

RESUMO

BACKGROUND: COVID-19 vaccines show excellent efficacy in clinical trials and effectiveness in real-world data, but some people still become infected with SARS-CoV-2 after vaccination. This study aimed to identify risk factors for post-vaccination SARS-CoV-2 infection and describe the characteristics of post-vaccination illness. METHODS: This prospective, community-based, nested, case-control study used self-reported data (eg, on demographics, geographical location, health risk factors, and COVID-19 test results, symptoms, and vaccinations) from UK-based, adult (≥18 years) users of the COVID Symptom Study mobile phone app. For the risk factor analysis, cases had received a first or second dose of a COVID-19 vaccine between Dec 8, 2020, and July 4, 2021; had either a positive COVID-19 test at least 14 days after their first vaccination (but before their second; cases 1) or a positive test at least 7 days after their second vaccination (cases 2); and had no positive test before vaccination. Two control groups were selected (who also had not tested positive for SARS-CoV-2 before vaccination): users reporting a negative test at least 14 days after their first vaccination but before their second (controls 1) and users reporting a negative test at least 7 days after their second vaccination (controls 2). Controls 1 and controls 2 were matched (1:1) with cases 1 and cases 2, respectively, by the date of the post-vaccination test, health-care worker status, and sex. In the disease profile analysis, we sub-selected participants from cases 1 and cases 2 who had used the app for at least 14 consecutive days after testing positive for SARS-CoV-2 (cases 3 and cases 4, respectively). Controls 3 and controls 4 were unvaccinated participants reporting a positive SARS-CoV-2 test who had used the app for at least 14 consecutive days after the test, and were matched (1:1) with cases 3 and 4, respectively, by the date of the positive test, health-care worker status, sex, body-mass index (BMI), and age. We used univariate logistic regression models (adjusted for age, BMI, and sex) to analyse the associations between risk factors and post-vaccination infection, and the associations of individual symptoms, overall disease duration, and disease severity with vaccination status. FINDINGS: Between Dec 8, 2020, and July 4, 2021, 1 240 009 COVID Symptom Study app users reported a first vaccine dose, of whom 6030 (0·5%) subsequently tested positive for SARS-CoV-2 (cases 1), and 971 504 reported a second dose, of whom 2370 (0·2%) subsequently tested positive for SARS-CoV-2 (cases 2). In the risk factor analysis, frailty was associated with post-vaccination infection in older adults (≥60 years) after their first vaccine dose (odds ratio [OR] 1·93, 95% CI 1·50-2·48; p<0·0001), and individuals living in highly deprived areas had increased odds of post-vaccination infection following their first vaccine dose (OR 1·11, 95% CI 1·01-1·23; p=0·039). Individuals without obesity (BMI <30 kg/m2) had lower odds of infection following their first vaccine dose (OR 0·84, 95% CI 0·75-0·94; p=0·0030). For the disease profile analysis, 3825 users from cases 1 were included in cases 3 and 906 users from cases 2 were included in cases 4. Vaccination (compared with no vaccination) was associated with reduced odds of hospitalisation or having more than five symptoms in the first week of illness following the first or second dose, and long-duration (≥28 days) symptoms following the second dose. Almost all symptoms were reported less frequently in infected vaccinated individuals than in infected unvaccinated individuals, and vaccinated participants were more likely to be completely asymptomatic, especially if they were 60 years or older. INTERPRETATION: To minimise SARS-CoV-2 infection, at-risk populations must be targeted in efforts to boost vaccine effectiveness and infection control measures. Our findings might support caution around relaxing physical distancing and other personal protective measures in the post-vaccination era, particularly around frail older adults and individuals living in more deprived areas, even if these individuals are vaccinated, and might have implications for strategies such as booster vaccinations. FUNDING: ZOE, the UK Government Department of Health and Social Care, the Wellcome Trust, the UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging and Artificial Intelligence Centre for Value Based Healthcare, the UK National Institute for Health Research, the UK Medical Research Council, the British Heart Foundation, and the Alzheimer's Society.


Assuntos
COVID-19/epidemiologia , Aplicativos Móveis/estatística & dados numéricos , Vacinação/estatística & dados numéricos , Eficácia de Vacinas , Adulto , Idoso , COVID-19/prevenção & controle , Teste para COVID-19/estatística & dados numéricos , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Risco , Autorrelato , Reino Unido/epidemiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...