Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(12): 125002, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586950

RESUMO

This paper describes a technique for temperature sensitivity or thermal sag measurements of a geometric anti-spring based microelectromechanical system (MEMS) gravimeter (Wee-g). The Wee-g MEMS gravimeter is currently fabricated on a (100) silicon wafer using standard micro-nano fabrication techniques. The thermal behavior of silicon indicates that the Young's modulus of silicon decreases with increase in temperature (∼64 ppm/K). This leads to a softening of the silicon material, resulting in the proof mass displacing (or sagging) under the influence of increasing temperature. It results in a change in the measured gravity, which is expressed as temperature sensitivity in terms of change in gravity per degree temperature. The temperature sensitivity for the silicon based MEMS gravimeter is found to be 60.14-64.87, 61.76, and 62.76 µGal/mK for experimental, finite element analysis (FEA) simulation, and analytical calculations, respectively. It suggests that the gravimeter's temperature sensitivity is dependent on the material properties used to fabricate the MEMS devices. In this paper, the experimental measurements of thermal sag are presented along with analytical calculations and simulations of the effect using FEA. The bespoke optical measurement system to quantify the thermal sag is also described. The results presented are an essential step toward the development of temperature insensitive MEMS gravimeters.

2.
Sci Rep ; 12(1): 13091, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906251

RESUMO

The measurement of tiny variations in local gravity enables the observation of subterranean features. Gravimeters have historically been extremely expensive instruments, but usable gravity measurements have recently been conducted using MEMS (microelectromechanical systems) sensors. Such sensors are cheap to produce, since they rely on the same fabrication techniques used to produce mobile phone accelerometers. A significant challenge in the development of MEMS gravimeters is maintaining stability over long time periods, which is essential for long term monitoring applications. A standard way to demonstrate gravimeter stability and sensitivity is to measure the periodic elastic distortion of the Earth due to tidal forces-the Earth tides. Here, a 19 day measurement of the Earth tides, with a correlation coefficient to the theoretical signal of 0.975, has been presented. This result demonstrates that this MEMS gravimeter is capable of conducting long-term time-lapse gravimetry, a functionality essential for applications such as volcanology.

3.
Opt Express ; 28(12): 18180-18188, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32680019

RESUMO

Single-pixel imaging systems can obtain images from a wide range of wavelengths at low-cost compared to those using conventional multi-pixel, focal-plane array sensors, especially at wavelengths outside the visible spectrum. The ability to sense short-wave infrared radiation with single-pixel techniques extends imaging capability to adverse weather conditions and environments, such as fog, haze, or night time. In this work, we demonstrate a dual-band single-pixel telescope for imaging at both visible (VIS) and short-wave infrared (SWIR) spectral regions simultaneously under some of these outdoor weather conditions. At 64 × 64 pixel-resolution, our system has achieved continuous VIS and SWIR imaging of various objects at a frame rate up to 2.4 Hz. Visual and contrast comparison between the reconstructed VIS and SWIR images emphasizes the significant contribution of infrared observation using the single-pixel technique. The single-pixel telescope provides an alternative cost-effective imaging solution for synchronized dual-waveband optical applications.

4.
Phys Rev Lett ; 120(14): 141102, 2018 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-29694109

RESUMO

We propose an upgrade to Advanced LIGO (aLIGO), named LIGO-LF, that focuses on improving the sensitivity in the 5-30 Hz low-frequency band, and we explore the upgrade's astrophysical applications. We present a comprehensive study of the detector's technical noises and show that with technologies currently under development, such as interferometrically sensed seismometers and balanced-homodyne readout, LIGO-LF can reach the fundamental limits set by quantum and thermal noises down to 5 Hz. These technologies are also directly applicable to the future generation of detectors. We go on to consider this upgrade's implications for the astrophysical output of an aLIGO-like detector. A single LIGO-LF can detect mergers of stellar-mass black holes (BHs) out to a redshift of z≃6 and would be sensitive to intermediate-mass black holes up to 2000 M_{⊙}. The detection rate of merging BHs will increase by a factor of 18 compared to aLIGO. Additionally, for a given source the chirp mass and total mass can be constrained 2 times better than aLIGO and the effective spin 3-5 times better than aLIGO. Furthermore, LIGO-LF enables the localization of coalescing binary neutron stars with an uncertainty solid angle 10 times smaller than that of aLIGO at 30 Hz and 4 times smaller when the entire signal is used. LIGO-LF also significantly enhances the probability of detecting other astrophysical phenomena including the tidal excitation of neutron star r modes and the gravitational memory effects.

5.
Philos Trans A Math Phys Eng Sci ; 376(2120)2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29661979

RESUMO

A microelectromechanical system (MEMS) gravimeter has been manufactured with a sensitivity of 40 ppb in an integration time of 1 s. This sensor has been used to measure the Earth tides: the elastic deformation of the globe due to tidal forces. No such measurement has been demonstrated before now with a MEMS gravimeter. Since this measurement, the gravimeter has been miniaturized and tested in the field. Measurements of the free-air and Bouguer effects have been demonstrated by monitoring the change in gravitational acceleration measured while going up and down a lift shaft of 20.7 m, and up and down a local hill of 275 m. These tests demonstrate that the device has the potential to be a useful field-portable instrument. The development of an even smaller device is underway, with a total package size similar to that of a smartphone.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'.

6.
Sensors (Basel) ; 17(11)2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-29117099

RESUMO

Gravimeters are used to measure density anomalies under the ground. They are applied in many different fields from volcanology to oil and gas exploration, but present commercial systems are costly and massive. A new type of gravity sensor has been developed that utilises the same fabrication methods as those used to make mobile phone accelerometers. In this study, we describe the first results of a field-portable microelectromechanical system (MEMS) gravimeter. The stability of the gravimeter is demonstrated through undertaking a multi-day measurement with a standard deviation of 5.58 × 10 - 6 ms - 2 . It is then demonstrated that a change in gravitational acceleration of 4.5 × 10 - 6 ms - 2 can be measured as the device is moved between the top and the bottom of a 20.7 m lift shaft with a signal-to-noise ratio (SNR) of 14.25. Finally, the device is demonstrated to be stable in a more harsh environment: a 4.5 × 10 - 4 ms - 2 gravity variation is measured between the top and bottom of a 275-m hill with an SNR of 15.88. These initial field-tests are an important step towards a chip-sized gravity sensor.

7.
Opt Express ; 25(18): 21826-21840, 2017 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-29041475

RESUMO

The quantised nature of the electromagnetic field sets the classical limit to the sensitivity of position measurements. However, techniques based on the properties of quantum states can be exploited to accurately measure the relative displacement of a physical object beyond this classical limit. In this work, we use a simple scheme based on the split-detection of quantum correlations to measure the position of a shadow at the single-photon light level, with a precision that exceeds the shot-noise limit. This result is obtained by analysing the correlated signals of bi-photon pairs, created in parametric downconversion and detected by an electron multiplying CCD (EMCCD) camera employed as a split-detector. By comparing the measured statistics of spatially anticorrelated and uncorrelated photons we were able to observe a significant noise reduction corresponding to an improvement in position sensitivity of up to 17% (0.8dB). Our straightforward approach to sub-shot-noise position measurement is compatible with conventional shadow-sensing techniques based on the split-detection of light-fields, and yields an improvement that scales favourably with the detector's quantum efficiency.

8.
J Mod Opt ; 61(sup1): S10-S45, 2014 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-25705087

RESUMO

We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors.

9.
Rev Sci Instrum ; 79(2 Pt 1): 025103, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18315325

RESUMO

This paper describes the development of a second generation superconducting torsion balance to be used for a precision measurement of the Casimir force and a short range test of the inverse square law of gravity at 4.2 K. The instrument utilizes niobium (Nb) as the superconducting element and employs passive damping of the parasitic modes of oscillation. Any contact potential difference between the torsion balance and its surroundings is nulled to within approximately 50 mV by applying known DC biases and fitting the resulting parabolic relationship between the measured torque and the applied voltage. A digital proportional-integral-derivative servo system has been developed and characterized in order to control the azimuthal position of the instrument. The angular acceleration and displacement noise are currently limited by the capacitive sensor at the level 3x10(-8) rad s(-2)/ squarerootHz and 30 nm/ squarerootHz at 100 mHz. The possibility of lossy dielectric coatings on the surface of the torsion balance test masses is also investigated. Our measurements show that the loss angles delta are (1.5+/-2.3)x10(-4) and (2.0+/-2.2)x10(-4) at frequencies of 5 and 10 mHz, respectively. These values of loss are not significant sources of error for measurements of the Casimir force using this experimental setup.

10.
Phys Rev Lett ; 98(8): 081101, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17359083

RESUMO

A new device that we refer to as the spherical superconducting torsion balance has been used to search for a new force coupling mass to intrinsic spin. Our experimental approach also employs a novel spin-source geometry that allows unprecedented sensitivity in the range 100 mum10 mm at 1sigma confidence. At a range of 1 mm our most relaxed limit is g_{p};{e}g_{s}<1.5x10;{-24}.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...