Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 223(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36652461

RESUMO

Transcription factors (TFs) play a key role in development and in cellular responses to the environment by activating or repressing the transcription of target genes in precise spatial and temporal patterns. In order to develop a catalog of target genes of Drosophila melanogaster TFs, the modERN consortium systematically knocked down the expression of TFs using RNAi in whole embryos followed by RNA-seq. We generated data for 45 TFs which have 18 different DNA-binding domains and are expressed in 15 of the 16 organ systems. The range of inactivation of the targeted TFs by RNAi ranged from log2fold change -3.52 to +0.49. The TFs also showed remarkable heterogeneity in the numbers of candidate target genes identified, with some generating thousands of candidates and others only tens. We present detailed analysis from five experiments, including those for three TFs that have been the focus of previous functional studies (ERR, sens, and zfh2) and two previously uncharacterized TFs (sens-2 and CG32006), as well as short vignettes for selected additional experiments to illustrate the utility of this resource. The RNA-seq datasets are available through the ENCODE DCC (http://encodeproject.org) and the Sequence Read Archive (SRA). TF and target gene expression patterns can be found here: https://insitu.fruitfly.org. These studies provide data that facilitate scientific inquiries into the functions of individual TFs in key developmental, metabolic, defensive, and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks during embryogenesis.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Interferência de RNA , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Proteínas de Ligação a DNA/genética
2.
Commun Biol ; 4(1): 1324, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819611

RESUMO

The gut microbiome produces vitamins, nutrients, and neurotransmitters, and helps to modulate the host immune system-and also plays a major role in the metabolism of many exogenous compounds, including drugs and chemical toxicants. However, the extent to which specific microbial species or communities modulate hazard upon exposure to chemicals remains largely opaque. Focusing on the effects of collateral dietary exposure to the widely used herbicide atrazine, we applied integrated omics and phenotypic screening to assess the role of the gut microbiome in modulating host resilience in Drosophila melanogaster. Transcriptional and metabolic responses to these compounds are sex-specific and depend strongly on the presence of the commensal microbiome. Sequencing the genomes of all abundant microbes in the fly gut revealed an enzymatic pathway responsible for atrazine detoxification unique to Acetobacter tropicalis. We find that Acetobacter tropicalis alone, in gnotobiotic animals, is sufficient to rescue increased atrazine toxicity to wild-type, conventionally reared levels. This work points toward the derivation of biotic strategies to improve host resilience to environmental chemical exposures, and illustrates the power of integrative omics to identify pathways responsible for adverse health outcomes.


Assuntos
Atrazina/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Inseticidas/toxicidade , Acetobacter/genética , Acetobacter/metabolismo , Animais , Drosophila melanogaster/microbiologia , Feminino , Inativação Metabólica , Masculino
3.
Microbiol Resour Announc ; 9(44)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122411

RESUMO

Lactobacillus brevis Oregon-R-modENCODE strain BDGP6 was isolated from the gut of Drosophila melanogaster for functional host-microbial interaction studies. The bacterial chromosome is a single circular DNA molecule of 2,785,111 bp with a G+C content of 46%.

4.
Proc Natl Acad Sci U S A ; 116(3): 900-908, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30598455

RESUMO

Identifying functional enhancer elements in metazoan systems is a major challenge. Large-scale validation of enhancers predicted by ENCODE reveal false-positive rates of at least 70%. We used the pregrastrula-patterning network of Drosophila melanogaster to demonstrate that loss in accuracy in held-out data results from heterogeneity of functional signatures in enhancer elements. We show that at least two classes of enhancers are active during early Drosophila embryogenesis and that by focusing on a single, relatively homogeneous class of elements, greater than 98% prediction accuracy can be achieved in a balanced, completely held-out test set. The class of well-predicted elements is composed predominantly of enhancers driving multistage segmentation patterns, which we designate segmentation driving enhancers (SDE). Prediction is driven by the DNA occupancy of early developmental transcription factors, with almost no additional power derived from histone modifications. We further show that improved accuracy is not a property of a particular prediction method: after conditioning on the SDE set, naïve Bayes and logistic regression perform as well as more sophisticated tools. Applying this method to a genome-wide scan, we predict 1,640 SDEs that cover 1.6% of the genome. An analysis of 32 SDEs using whole-mount embryonic imaging of stably integrated reporter constructs chosen throughout our prediction rank-list showed >90% drove expression patterns. We achieved 86.7% precision on a genome-wide scan, with an estimated recall of at least 98%, indicating high accuracy and completeness in annotating this class of functional elements.


Assuntos
Proteínas de Drosophila , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Elementos Facilitadores Genéticos/fisiologia , Análise de Sequência de DNA , Fatores de Transcrição , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Estudo de Associação Genômica Ampla , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
iScience ; 2: 136-140, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29888763

RESUMO

High-content image acquisition is generally limited to cells grown in culture, requiring complex hardware and preset imaging modalities. Here we report an open source software package, OpenHiCAMM (Open Hi Content Acquisition for µManager), that provides a flexible framework for integration of generic microscope-associated robotics and image processing with sequential work-flows. As an example, we imaged Drosophila embryos, detecting the embryos at low resolution, followed by re-imaging the detected embryos at high resolution, suitable for computational analysis and screening. The OpenHiCAMM package is easy to use and adapt for automating complex microscope image tasks. It expands our abilities for high-throughput image-based screens to a new range of biological samples, such as organoids, and will provide a foundation for bioimaging systems biology.

6.
Genetics ; 208(3): 937-949, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29284660

RESUMO

To develop a catalog of regulatory sites in two major model organisms, Drosophila melanogaster and Caenorhabditis elegans, the modERN (model organism Encyclopedia of Regulatory Networks) consortium has systematically assayed the binding sites of transcription factors (TFs). Combined with data produced by our predecessor, modENCODE (Model Organism ENCyclopedia Of DNA Elements), we now have data for 262 TFs identifying 1.23 M sites in the fly genome and 217 TFs identifying 0.67 M sites in the worm genome. Because sites from different TFs are often overlapping and tightly clustered, they fall into 91,011 and 59,150 regions in the fly and worm, respectively, and these binding sites span as little as 8.7 and 5.8 Mb in the two organisms. Clusters with large numbers of sites (so-called high occupancy target, or HOT regions) predominantly associate with broadly expressed genes, whereas clusters containing sites from just a few factors are associated with genes expressed in tissue-specific patterns. All of the strains expressing GFP-tagged TFs are available at the stock centers, and the chromatin immunoprecipitation sequencing data are available through the ENCODE Data Coordinating Center and also through a simple interface (http://epic.gs.washington.edu/modERN/) that facilitates rapid accessibility of processed data sets. These data will facilitate a vast number of scientific inquiries into the function of individual TFs in key developmental, metabolic, and defense and homeostatic regulatory pathways, as well as provide a broader perspective on how individual TFs work together in local networks and globally across the life spans of these two key model organisms.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Bases de Dados Genéticas , Drosophila/genética , Drosophila/metabolismo , Estudo de Associação Genômica Ampla , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Imunoprecipitação da Cromatina , Estudo de Associação Genômica Ampla/métodos , Modelos Biológicos , Motivos de Nucleotídeos , Ligação Proteica
7.
Genome Announc ; 5(48)2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192079

RESUMO

Acetobacter pomorum Oregon-R-modENCODE strain BDGP5 was isolated from Drosophila melanogaster for functional host-microbe interaction studies. The complete genome is composed of a single chromosomal circle of 2,848,089 bp, with a G+C content of 53% and three plasmids of 131,455 bp, 19,216 bp, and 9,160 bp.

8.
Genome Announc ; 5(46)2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29146844

RESUMO

Acetobacter tropicalis Oregon-R-modENCODE strain BDGP1 was isolated from Drosophila melanogaster for functional host-microbe interaction studies. The complete genome comprises a single chromosomal circle of 3,988,649 bp with a G+C content of 56% and a conjugative plasmid of 151,013 bp.

9.
Genome Announc ; 5(41)2017 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-29025953

RESUMO

Lactobacillus plantarum Oregon-R-modENCODE strain BDGP2 was isolated from the gut of Drosophila melanogaster for functional host microbial interaction studies. The complete genome comprised a single circular genome of 3,407,160 bp, with a G+C content of 44%, and four plasmids.

10.
Genome Announc ; 5(40)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28982997

RESUMO

Enterococcus durans Oregon-R-modENCODE strain BDGP3 was isolated from the Drosophila melanogaster gut for functional host-microbe interaction studies. The complete genome is composed of a single circular genome of 2,983,334 bp, with a G+C content of 38%, and a single plasmid of 5,594 bp.

11.
Genome Announc ; 5(40)2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28983001

RESUMO

Bacillus kochii Oregon-R-modENCODE strain BDGP4 was isolated from the gut of Drosophila melanogaster for functional host microbial interaction studies. The complete genome comprised a single chromosomal circle of 4,557,232 bp with a G+C content of 37% and a single plasmid of 137,143 bp.

12.
Proc Natl Acad Sci U S A ; 113(16): 4290-5, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27071099

RESUMO

Spatial gene expression patterns enable the detection of local covariability and are extremely useful for identifying local gene interactions during normal development. The abundance of spatial expression data in recent years has led to the modeling and analysis of regulatory networks. The inherent complexity of such data makes it a challenge to extract biological information. We developed staNMF, a method that combines a scalable implementation of nonnegative matrix factorization (NMF) with a new stability-driven model selection criterion. When applied to a set ofDrosophilaearly embryonic spatial gene expression images, one of the largest datasets of its kind, staNMF identified 21 principal patterns (PP). Providing a compact yet biologically interpretable representation ofDrosophilaexpression patterns, PP are comparable to a fate map generated experimentally by laser ablation and show exceptional promise as a data-driven alternative to manual annotations. Our analysis mapped genes to cell-fate programs and assigned putative biological roles to uncharacterized genes. Finally, we used the PP to generate local transcription factor regulatory networks. Spatially local correlation networks were constructed for six PP that span along the embryonic anterior-posterior axis. Using a two-tail 5% cutoff on correlation, we reproduced 10 of the 11 links in the well-studied gap gene network. The performance of PP with theDrosophiladata suggests that staNMF provides informative decompositions and constitutes a useful computational lens through which to extract biological insight from complex and often noisy gene expression data.


Assuntos
Bases de Dados Genéticas , Regulação da Expressão Gênica/fisiologia , Redes Reguladoras de Genes/fisiologia , Modelos Genéticos , Animais , Drosophila melanogaster
13.
Nature ; 512(7515): 393-9, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24670639

RESUMO

Animal transcriptomes are dynamic, with each cell type, tissue and organ system expressing an ensemble of transcript isoforms that give rise to substantial diversity. Here we have identified new genes, transcripts and proteins using poly(A)+ RNA sequencing from Drosophila melanogaster in cultured cell lines, dissected organ systems and under environmental perturbations. We found that a small set of mostly neural-specific genes has the potential to encode thousands of transcripts each through extensive alternative promoter usage and RNA splicing. The magnitudes of splicing changes are larger between tissues than between developmental stages, and most sex-specific splicing is gonad-specific. Gonads express hundreds of previously unknown coding and long non-coding RNAs (lncRNAs), some of which are antisense to protein-coding genes and produce short regulatory RNAs. Furthermore, previously identified pervasive intergenic transcription occurs primarily within newly identified introns. The fly transcriptome is substantially more complex than previously recognized, with this complexity arising from combinatorial usage of promoters, splice sites and polyadenylation sites.


Assuntos
Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Transcriptoma/genética , Processamento Alternativo/genética , Animais , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Feminino , Masculino , Anotação de Sequência Molecular , Tecido Nervoso/metabolismo , Especificidade de Órgãos , Poli A/genética , Poliadenilação , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Caracteres Sexuais , Estresse Fisiológico/genética
14.
PLoS One ; 9(1): e86485, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475130

RESUMO

Space travel presents unlimited opportunities for exploration and discovery, but requires better understanding of the biological consequences of long-term exposure to spaceflight. Immune function in particular is relevant for space travel. Human immune responses are weakened in space, with increased vulnerability to opportunistic infections and immune-related conditions. In addition, microorganisms can become more virulent in space, causing further challenges to health. To understand these issues better and to contribute to design of effective countermeasures, we used the Drosophila model of innate immunity to study immune responses in both hypergravity and spaceflight. Focusing on infections mediated through the conserved Toll and Imd signaling pathways, we found that hypergravity improves resistance to Toll-mediated fungal infections except in a known gravitaxis mutant of the yuri gagarin gene. These results led to the first spaceflight project on Drosophila immunity, in which flies that developed to adulthood in microgravity were assessed for immune responses by transcription profiling on return to Earth. Spaceflight alone altered transcription, producing activation of the heat shock stress system. Space flies subsequently infected by fungus failed to activate the Toll pathway. In contrast, bacterial infection produced normal activation of the Imd pathway. We speculate on possible linkage between functional Toll signaling and the heat shock chaperone system. Our major findings are that hypergravity and spaceflight have opposing effects, and that spaceflight produces stress-related transcriptional responses and results in a specific inability to mount a Toll-mediated infection response.


Assuntos
Botrytis/imunologia , Drosophila melanogaster/genética , Escherichia coli/imunologia , Imunidade Inata , Hospedeiro Imunocomprometido , Voo Espacial , Receptores Toll-Like/genética , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/imunologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/imunologia , Drosophila melanogaster/imunologia , Drosophila melanogaster/microbiologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Hipergravidade , Masculino , Transdução de Sinais , Receptores Toll-Like/imunologia , Ausência de Peso
15.
Genome Biol ; 14(12): R140, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24359758

RESUMO

BACKGROUND: Site-specific transcription factors (TFs) bind DNA regulatory elements to control expression of target genes, forming the core of gene regulatory networks. Despite decades of research, most studies focus on only a small number of TFs and the roles of many remain unknown. RESULTS: We present a systematic characterization of spatiotemporal gene expression patterns for all known or predicted Drosophila TFs throughout embryogenesis, the first such comprehensive study for any metazoan animal. We generated RNA expression patterns for all 708 TFs by in situ hybridization, annotated the patterns using an anatomical controlled vocabulary, and analyzed TF expression in the context of organ system development. Nearly all TFs are expressed during embryogenesis and more than half are specifically expressed in the central nervous system. Compared to other genes, TFs are enriched early in the development of most organ systems, and throughout the development of the nervous system. Of the 535 TFs with spatially restricted expression, 79% are dynamically expressed in multiple organ systems while 21% show single-organ specificity. Of those expressed in multiple organ systems, 77 TFs are restricted to a single organ system either early or late in development. Expression patterns for 354 TFs are characterized for the first time in this study. CONCLUSIONS: We produced a reference TF dataset for the investigation of gene regulatory networks in embryogenesis, and gained insight into the expression dynamics of the full complement of TFs controlling the development of each organ system.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/metabolismo , Fatores de Transcrição/genética , Animais , Sistema Nervoso Central/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Hibridização In Situ , Especificidade de Órgãos
16.
Proc Natl Acad Sci U S A ; 109(52): 21330-5, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23236164

RESUMO

In animals, each sequence-specific transcription factor typically binds to thousands of genomic regions in vivo. Our previous studies of 20 transcription factors show that most genomic regions bound at high levels in Drosophila blastoderm embryos are known or probable functional targets, but genomic regions occupied only at low levels have characteristics suggesting that most are not involved in the cis-regulation of transcription. Here we use transgenic reporter gene assays to directly test the transcriptional activity of 104 genomic regions bound at different levels by the 20 transcription factors. Fifteen genomic regions were selected based solely on the DNA occupancy level of the transcription factor Kruppel. Five of the six most highly bound regions drive blastoderm patterns of reporter transcription. In contrast, only one of the nine lowly bound regions drives transcription at this stage and four of them are not detectably active at any stage of embryogenesis. A larger set of 89 genomic regions chosen using criteria designed to identify functional cis-regulatory regions supports the same trend: genomic regions occupied at high levels by transcription factors in vivo drive patterned gene expression, whereas those occupied only at lower levels mostly do not. These results support studies that indicate that the high cellular concentrations of sequence-specific transcription factors drive extensive, low-occupancy, nonfunctional interactions within the accessible portions of the genome.


Assuntos
DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter/genética , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Embrião não Mamífero/metabolismo , Feminino , Genoma de Inseto/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Ligação Proteica/genética
17.
Methods Mol Biol ; 723: 257-72, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21370071

RESUMO

We describe a method for high-throughput production of protein expression-ready clones. Open-reading frames (ORFs) are amplified by PCR from sequence-verified cDNA clones and subcloned into an appropriate loxP-containing donor vector. Each ORF is represented by two types of clones, one containing the native stop codon for expression of the native protein or amino-terminal fusion constructs and the other made without the stop codon to allow for carboxy-terminal fusion constructs. The expression-ready clone is sequenced to verify that no PCR errors have been introduced. We have made over 11,000 clones ranging in size from 78-6,699 bp with a median of 1,056 bp. This is the largest set of fully sequence-verified-"movable ORFs" of any model organism genome project. The donor clone facilitates rapid and simple transfer of the ORF into any expression vector of choice. Vectors are available for expressing these ORFs in bacteria, cell lines, or transgenic animals. The flexibility of this ORF clone collection makes possible a variety of proteomic applications, including protein interaction mapping, high-throughput cell-based expression screens, and functional studies. We have transferred 5,800 ORFs to a vector that allows production of a FLAG-HA tagged protein in Drosophila tissue culture cells with a metallothionein-inducible promoter. These clones are being used to produce a protein complex map of Drosophila from Schneider cells.


Assuntos
Biblioteca Gênica , Proteômica/métodos , Ampicilina/farmacologia , Bactérias/citologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Técnicas de Cultura de Células , Extratos Celulares , Cromatografia em Gel , Clonagem Molecular , Biologia Computacional , Primers do DNA/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Farmacorresistência Bacteriana , Eletroforese em Gel de Ágar , Expressão Gênica , Vetores Genéticos/genética , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase , Transformação Bacteriana
18.
PLoS Biol ; 8(8)2010 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-20808951

RESUMO

Cis-regulatory modules that drive precise spatial-temporal patterns of gene expression are central to the process of metazoan development. We describe a new computational strategy to annotate genomic sequences based on their "pattern generating potential" and to produce quantitative descriptions of transcriptional regulatory networks at the level of individual protein-module interactions. We use this approach to convert the qualitative understanding of interactions that regulate Drosophila segmentation into a network model in which a confidence value is associated with each transcription factor-module interaction. Sequence information from multiple Drosophila species is integrated with transcription factor binding specificities to determine conserved binding site frequencies across the genome. These binding site profiles are combined with transcription factor expression information to create a model to predict module activity patterns. This model is used to scan genomic sequences for the potential to generate all or part of the expression pattern of a nearby gene, obtained from available gene expression databases. Interactions between individual transcription factors and modules are inferred by a statistical method to quantify a factor's contribution to the module's pattern generating potential. We use these pattern generating potentials to systematically describe the location and function of known and novel cis-regulatory modules in the segmentation network, identifying many examples of modules predicted to have overlapping expression activities. Surprisingly, conserved transcription factor binding site frequencies were as effective as experimental measurements of occupancy in predicting module expression patterns or factor-module interactions. Thus, unlike previous module prediction methods, this method predicts not only the location of modules but also their spatial activity pattern and the factors that directly determine this pattern. As databases of transcription factor specificities and in vivo gene expression patterns grow, analysis of pattern generating potentials provides a general method to decode transcriptional regulatory sequences and networks.


Assuntos
Padronização Corporal , Biologia Computacional/métodos , Drosophila/embriologia , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Padronização Corporal/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Modelos Genéticos , Ligação Proteica , Software , Fatores de Transcrição/genética
19.
Mol Syst Biol ; 6: 345, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20087342

RESUMO

Discovery of temporal and spatial patterns of gene expression is essential for understanding the regulatory networks and development in multicellular organisms. We analyzed the images from our large-scale spatial expression data set of early Drosophila embryonic development and present a comprehensive computational image analysis of the expression landscape. For this study, we created an innovative virtual representation of embryonic expression patterns using an elliptically shaped mesh grid that allows us to make quantitative comparisons of gene expression using a common frame of reference. Demonstrating the power of our approach, we used gene co-expression to identify distinct expression domains in the early embryo; the result is surprisingly similar to the fate map determined using laser ablation. We also used a clustering strategy to find genes with similar patterns and developed new analysis tools to detect variation within consensus patterns, adjacent non-overlapping patterns, and anti-correlated patterns. Of the 1800 genes investigated, only half had previously assigned functions. The known genes suggest developmental roles for the clusters, and identification of related patterns predicts requirements for co-occurring biological functions.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Processamento de Sinais Assistido por Computador , Biologia de Sistemas , Animais , Análise por Conglomerados , Gráficos por Computador , Bases de Dados Genéticas , Drosophila/embriologia , Redes Reguladoras de Genes , Fatores de Tempo
20.
Nat Protoc ; 4(5): 605-18, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19360017

RESUMO

We describe a high-throughput protocol for RNA in situ hybridization (ISH) to Drosophila embryos in a 96-well format. cDNA or genomic DNA templates are amplified by PCR and then digoxigenin-labeled ribonucleotides are incorporated into antisense RNA probes by in vitro transcription. The quality of each probe is evaluated before ISH using a RNA probe quantification (dot blot) assay. RNA probes are hybridized to fixed, mixed-staged Drosophila embryos in 96-well plates. The resulting stained embryos can be examined and photographed immediately or stored at 4 degrees C for later analysis. Starting with fixed, staged embryos, the protocol takes 6 d from probe template production through hybridization. Preparation of fixed embryos requires a minimum of 2 weeks to collect embryos representing all stages. The method has been used to determine the expression patterns of over 6,000 genes throughout embryogenesis.


Assuntos
Drosophila/genética , Desenvolvimento Embrionário/genética , Perfilação da Expressão Gênica/métodos , Hibridização In Situ/métodos , RNA/análise , Animais , Clonagem Molecular , Drosophila/embriologia , Técnicas de Cultura Embrionária , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Reação em Cadeia da Polimerase , Sondas RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...