Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 11(1)2020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31937643

RESUMO

Virus and host factors contribute to cell-to-cell variation in viral infections and determine the outcome of the overall infection. However, the extent of the variability at the single-cell level and how it impacts virus-host interactions at a system level are not well understood. To characterize the dynamics of viral transcription and host responses, we used single-cell RNA sequencing to quantify at multiple time points the host and viral transcriptomes of human A549 cells and primary bronchial epithelial cells infected with influenza A virus. We observed substantial variability in viral transcription between cells, including the accumulation of defective viral genomes (DVGs) that impact viral replication. We show (i) a correlation between DVGs and virus-induced variation of the host transcriptional program and (ii) an association between differential inductions of innate immune response genes and attenuated viral transcription in subpopulations of cells. These observations at the single-cell level improve our understanding of the complex virus-host interplay during influenza virus infection.IMPORTANCE Defective influenza virus particles generated during viral replication carry incomplete viral genomes and can interfere with the replication of competent viruses. These defective genomes are thought to modulate the disease severity and pathogenicity of an influenza virus infection. Different defective viral genomes also introduce another source of variation across a heterogeneous cell population. Evaluating the impact of defective virus genomes on host cell responses cannot be fully resolved at the population level, requiring single-cell transcriptional profiling. Here, we characterized virus and host transcriptomes in individual influenza virus-infected cells, including those of defective viruses that arise during influenza A virus infection. We established an association between defective virus transcription and host responses and validated interfering and immunostimulatory functions of identified dominant defective viral genome species in vitro This study demonstrates the intricate effects of defective viral genomes on host transcriptional responses and highlights the importance of capturing host-virus interactions at the single-cell level.


Assuntos
Vírus Defeituosos/genética , Células Epiteliais/virologia , Perfilação da Expressão Gênica , Interações entre Hospedeiro e Microrganismos/imunologia , Células A549 , Brônquios/citologia , Brônquios/virologia , Células Cultivadas , Vírus Defeituosos/imunologia , Genoma Viral , Humanos , Vírus da Influenza A/fisiologia , RNA Viral/genética , Análise de Sequência de RNA , Análise de Célula Única , Replicação Viral
2.
Oncotarget ; 9(2): 2603-2621, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29416795

RESUMO

BACKGROUND: Gliosarcoma is a rare variant of glioblastoma (GBM) that exhibits frequent mutations in TP53 and can develop in a secondary fashion after chemoradiation of a primary GBM. Whether temozolomide (TMZ)-induced mutagenesis of the TP53 DNA-binding domain (DBD) can drive the pathogenesis of gliosarcoma is unclear. METHODS: We identified a case of a primary GBM that rapidly progressed into secondary gliosarcoma shortly after chemoradiation was initiated. Bulk tumor was collected and gliomasphere cultures derived from both the pre- and post-treatment tumors. We performed targeted DNA sequencing and transcriptome analyses of the specimens to understand their phylogenetic relationship and identify differentially expressed gene pathways. Gliomaspheres from the primary GBM were treated with TMZ and then analyzed to compare patterns of mutagenesis in vivo and ex vivo. RESULTS: The pre- and post-treatment tumors shared EGFR, CDKN2A, and PTEN mutations, but only the secondary gliosarcoma exhibited TP53 DBD missense mutations. Two mutations, R110C, and R175H, were identified, each in distinct clones. Both were base transitions characteristic of TMZ mutagenesis. Gene expression analysis identified increased JAK-STAT signaling in the gliosarcoma, together with reduced expression of microRNAs known to regulate epithelial-mesenchymal transition. Ex vivo treatment of the GBM spheres with TMZ generated numerous variants in cancer driver genes, including TP53 and CDH1, which were mutated in the post-treatment tumor. CONCLUSIONS: TMZ-induced TP53 gain-of-function mutations can have a driving role in secondary gliosarcoma pathogenesis. Analysis of variants identified in ex vivo TMZ-treated gliomaspheres may have utility in predicting GBM evolutionary trajectories in vivo during standard chemoradiation.

3.
JCI Insight ; 2(6): e92061, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28352668

RESUMO

Parathyroid carcinoma (PC) is an extremely rare malignancy lacking effective therapeutic intervention. We generated and analyzed whole-exome sequencing data from 17 patients to identify somatic and germline genetic alterations. A panel of selected genes was sequenced in a 7-tumor expansion cohort. We show that 47% (8 of 17) of the tumors harbor somatic mutations in the CDC73 tumor suppressor, with germline inactivating variants in 4 of the 8 patients. The PI3K/AKT/mTOR pathway was altered in 21% of the 24 cases, revealing a major oncogenic pathway in PC. We observed CCND1 amplification in 29% of the 17 patients, and a previously unreported recurrent mutation in putative kinase ADCK1. We identified the first sporadic PCs with somatic mutations in the Wnt canonical pathway, complementing previously described epigenetic mechanisms mediating Wnt activation. This is the largest genomic sequencing study of PC, and represents major progress toward a full molecular characterization of this rare malignancy to inform improved and individualized treatments.


Assuntos
Perfilação da Expressão Gênica , Mutação , Neoplasias das Paratireoides/genética , Estudos de Coortes , Ciclina D1/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/genética , Via de Sinalização Wnt
4.
Proc Natl Acad Sci U S A ; 112(5): 1446-51, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25605943

RESUMO

Neck muscles constitute a transition zone between somite-derived skeletal muscles of the trunk and limbs, and muscles of the head, which derive from cranial mesoderm. The trapezius and sternocleidomastoid neck muscles are formed from progenitor cells that have expressed markers of cranial pharyngeal mesoderm, whereas other muscles in the neck arise from Pax3-expressing cells in the somites. Mef2c-AHF-Cre genetic tracing experiments and Tbx1 mutant analysis show that nonsomitic neck muscles share a gene regulatory network with cardiac progenitor cells in pharyngeal mesoderm of the second heart field (SHF) and branchial arch-derived head muscles. Retrospective clonal analysis shows that this group of neck muscles includes laryngeal muscles and a component of the splenius muscle, of mixed somitic and nonsomitic origin. We demonstrate that the trapezius muscle group is clonally related to myocardium at the venous pole of the heart, which derives from the posterior SHF. The left clonal sublineage includes myocardium of the pulmonary trunk at the arterial pole of the heart. Although muscles derived from the first and second branchial arches also share a clonal relationship with different SHF-derived parts of the heart, neck muscles are clonally distinct from these muscles and define a third clonal population of common skeletal and cardiac muscle progenitor cells within cardiopharyngeal mesoderm. By linking neck muscle and heart development, our findings highlight the importance of cardiopharyngeal mesoderm in the evolution of the vertebrate heart and neck and in the pathophysiology of human congenital disease.


Assuntos
Coração/embriologia , Músculo Esquelético/embriologia , Pescoço/embriologia , Animais , Redes Reguladoras de Genes , Camundongos , Camundongos Transgênicos , Somitos
5.
Stem Cell Reports ; 3(4): 556-65, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25358784

RESUMO

Organogenesis requires expansion of the embryonic vascular plexus that migrates into developing organs through a process called angiogenesis. Mesodermal progenitors are thought to derive endothelial cells (ECs) that contribute to both embryonic vasculogenesis and the subsequent organ angiogenesis. Here, we demonstrate that during development of the liver, which is an endoderm derivative, a subset of ECs is generated from FOXA2+ endoderm-derived fetal hepatoblast progenitor cells expressing KDR (VEGFR2/FLK-1). Using human and mouse embryonic stem cell models, we demonstrate that KDR+FOXA2+ endoderm cells developing in hepatic differentiation cultures generate functional ECs. This introduces the concept that ECs originate not exclusively from mesoderm but also from endoderm, supported in Foxa2 lineage-tracing mouse embryos by the identification of FOXA2+ cell-derived CD31+ ECs that integrate the vascular network of developing fetal livers.


Assuntos
Linhagem da Célula , Endoderma/citologia , Células Endoteliais/citologia , Fígado/citologia , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Endoteliais/metabolismo , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Fígado/embriologia , Mesoderma/citologia , Camundongos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
6.
Cell Stem Cell ; 12(6): 748-60, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-23746980

RESUMO

Understanding the fetal hepatic niche is essential for optimizing the generation of functional hepatocyte-like cells (hepatic cells) from human embryonic stem cells (hESCs). Here, we show that KDR (VEGFR2/FLK-1), previously assumed to be mostly restricted to mesodermal lineages, marks a hESC-derived hepatic progenitor. hESC-derived endoderm cells do not express KDR but, when cultured in media supporting hepatic differentiation, generate KDR+ hepatic progenitors and KDR- hepatic cells. KDR+ progenitors require active KDR signaling both to instruct their own differentiation into hepatic cells and to non-cell-autonomously support the functional maturation of cocultured KDR- hepatic cells. Analysis of human fetal livers suggests that similar progenitors are present in human livers. Lineage tracing in mice provides in vivo evidence of a KDR+ hepatic progenitor for fetal hepatoblasts, adult hepatocytes, and adult cholangiocytes. Altogether, our findings reveal that KDR is a conserved marker for endoderm-derived hepatic progenitors and a functional receptor instructing early liver development.


Assuntos
Evolução Molecular , Hepatócitos/citologia , Hepatócitos/metabolismo , Fígado/crescimento & desenvolvimento , Células-Tronco/citologia , Células-Tronco/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos
7.
Gene ; 519(1): 182-6, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23403232

RESUMO

Here we report the physical mapping of the rad56-1 mutation to the NAT3 gene, which encodes the catalytic subunit of the NatB N-terminal acetyltransferase in Saccharomyces cerevisiae. Mutation of RAD56 causes sensitivity to X-rays, methyl methanesulfonate, zeocin, camptothecin and hydroxyurea, but not to UV light, suggesting that N-terminal acetylation of specific DNA repair proteins is important for efficient DNA repair.


Assuntos
Mapeamento Cromossômico , Clonagem Molecular , Mutação , Acetiltransferase N-Terminal B/genética , Proteínas de Saccharomyces cerevisiae/genética , Acetilação , Bleomicina/efeitos adversos , Camptotecina/efeitos adversos , Dano ao DNA , Reparo do DNA , DNA Fúngico/genética , Hidroxiureia/efeitos adversos , Metanossulfonato de Metila/efeitos adversos , Acetiltransferase N-Terminal B/metabolismo , Fenótipo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Raios X/efeitos adversos
8.
J Stem Cell Res Ther ; Suppl 10(8): 1-7, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25364624

RESUMO

Liver diseases affect millions of people worldwide, especially in developing country. According to the American Liver Foundation, nearly 1 in every 10 Americans suffers from some form of liver disease. Even though, the liver has great ability to self-repair, in end-stage liver diseases including fibrosis, cirrhosis, and liver cancer induced by viral hepatitis and drugs, the liver regenerative capacity is exhausted. The only successful treatment for chronic liver failure is the whole liver transplantation. More recently, some clinical trials using hepatocyte transplantation have shown some clinical improvement for metabolic liver diseases and acute liver failure. However, the shortage of donor livers remains a life-threatening challenge in liver disease patients. To overcome the scarcity of donor livers, hepatocytes generated from embryonic stem cell or induced pluripotent stem cell differentiation cultures could provide an unlimited supply of such cells for transplantation. This review provides an updated summary of hepatic differentiation protocols published so far, with a characterization of the hepatic cells generated in vitro and their ability to regenerate damaged livers in vivo following transplantation in pre-clinical liver deficient mouse models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...