Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 124(9): 6051-6077, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38686960

RESUMO

Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.


Assuntos
Aminoácidos , Mutagênese , Biblioteca de Peptídeos , Aminoácidos/química , Aminoácidos/genética , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/genética
2.
ACS Cent Sci ; 10(4): 782-792, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38680566

RESUMO

Epigenetic reader proteins interpret histone epigenetic marks to regulate gene expression. Given their vital roles and the link between their dysfunction and various diseases, these proteins present compelling targets for therapeutic interventions. Nevertheless, designing selective inhibitors for these proteins poses significant challenges, primarily due to their unique properties such as shallow binding sites and similarities with homologous proteins. To overcome these challenges, we propose an innovative strategy that uses phage display with a genetically encoded noncanonical amino acid (ncAA) containing an epigenetic mark. This ncAA guides binding to the reader protein's active site, allowing the identification of peptide inhibitors with enhanced affinity and selectivity. In this study, we demonstrate this novel approach's effectiveness by identifying potent inhibitors for the ENL YEATS domain that plays a critical role in leukemogenesis. Our strategy involved genetically incorporating Nε-butyryl-l-lysine (BuK), known for its binding to ENL YEATS, into a phage display library for enriching the pool of potent inhibitors. One resultant hit was further optimized by substituting BuK with other pharmacophores to exploit a unique π-π-π stacking interaction with ENL YEATS. This led to the creation of selective ENL YEATS inhibitors with a KD value of 2.0 nM and a selectivity 28 times higher for ENL YEATS than its close homologue AF9 YEATS. One such inhibitor, tENL-S1f, demonstrated robust cellular target engagement and on-target effects to inhibit leukemia cell growth and suppress the expression of ENL target genes. As a pioneering study, this work opens up extensive avenues for the development of potent and selective peptidyl inhibitors for a broad spectrum of epigenetic reader proteins.

3.
ACS Chem Biol ; 17(10): 2911-2922, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36174018

RESUMO

Using the regioselective cyanobenzothiazole condensation reaction with an N-terminal cysteine and the chloroacetamide reaction with an internal cysteine, a phage-displayed macrocyclic 12-mer peptide library was constructed and subsequently validated. Using this library in combination with iterative selections against two epitopes from the receptor binding domain (RBD) of the novel severe acute respiratory syndrome virus 2 (SARS-CoV-2) Spike protein, macrocyclic peptides that strongly inhibit the interaction between the Spike RBD and angiotensin-converting enzyme 2 (ACE2), the human host receptor of SARS-CoV-2, were identified. The two epitopes were used instead of the Spike RBD to avoid selection of nonproductive macrocyclic peptides that bind RBD but do not directly inhibit its interactions with ACE2. Antiviral tests against SARS-CoV-2 showed that one macrocyclic peptide is highly potent against viral reproduction in Vero E6 cells with an EC50 value of 3.1 µM. The AlphaLISA-detected IC50 value for this macrocyclic peptide was 0.3 µM. The current study demonstrates that two kinetically controlled reactions toward N-terminal and internal cysteines, respectively, are highly effective in the construction of phage-displayed macrocyclic peptides, and the selection based on the SARS-CoV-2 Spike epitopes is a promising methodology in the identification of peptidyl antivirals.


Assuntos
Bacteriófagos , Tratamento Farmacológico da COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Epitopos/metabolismo , Biblioteca de Peptídeos , Cisteína/metabolismo , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo , Antivirais/farmacologia , Bacteriófagos/metabolismo
4.
Nat Commun ; 11(1): 1392, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170178

RESUMO

Although noncanonical amino acids (ncAAs) were first incorporated into phage libraries through amber suppression nearly two decades ago, their application for use in drug discovery has been limited due to inherent library bias towards sense-containing phages. Here, we report a technique based on superinfection immunity of phages to enrich amber-containing clones, thus avoiding the observed bias that has hindered incorporation of ncAAs into phage libraries. We then take advantage of this technique for development of active site-directed ligand evolution of peptides, where the ncAA serves as an anchor to direct the binding of its peptides to the target's active site. To demonstrate this, phage-displayed peptide libraries are developed that contain a genetically encoded butyryl lysine and are subsequently used to select for ligands that bind SIRT2. These ligands are then modified to develop low nanomolar inhibitors of SIRT2.


Assuntos
Âmbar/metabolismo , Bacteriófagos/metabolismo , Domínio Catalítico , Peptídeos/metabolismo , Descoberta de Drogas , Técnicas Genéticas , Humanos , Ligantes , Lisina/metabolismo , Simulação de Acoplamento Molecular , Biblioteca de Peptídeos , Sirtuína 2/metabolismo
5.
Angew Chem Int Ed Engl ; 58(44): 15904-15909, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31398275

RESUMO

Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic-peptide ligands for therapeutic targets, phage-displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage-display technique in which its displayed peptides are cyclized through a proximity-driven Michael addition reaction between a cysteine and an amber-codon-encoded Nϵ -acryloyl-lysine (AcrK). Using a randomized 6-mer library in which peptides were cyclized at two ends through a cysteine-AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4- to 6-fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.


Assuntos
Código Genético/genética , Biblioteca de Peptídeos , Peptídeos Cíclicos/genética , Ciclização , Cisteína/química , Cisteína/genética , Humanos , Ligantes , Lisina/química , Lisina/genética , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...