Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(4): eadi8339, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277450

RESUMO

The delta deposits in Jezero crater contain sedimentary records of potentially habitable conditions on Mars. NASA's Perseverance rover is exploring the Jezero western delta with a suite of instruments that include the RIMFAX ground penetrating radar, which provides continuous subsurface images that probe up to 20 meters below the rover. As Perseverance traversed across the contact between the Jezero crater floor and the delta, RIMFAX detected a distinct discontinuity in the subsurface layer structure. Below the contact boundary are older crater floor units exhibiting discontinuous inclined layering. Above the contact boundary are younger basal delta units exhibiting regular horizontal layering. At one location, there is a clear unconformity between the crater floor and delta layers, which implies that the crater floor experienced a period of erosion before the deposition of the overlying delta strata. The regularity and horizontality of the basal delta sediments observed in the radar cross sections indicate that they were deposited in a low-energy lake environment.

2.
Sci Adv ; 8(34): eabp8564, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36007008

RESUMO

The Radar Imager for Mars Subsurface Experiment instrument has conducted the first rover-mounted ground-penetrating radar survey of the Martian subsurface. A continuous radar image acquired over the Perseverance rover's initial ~3-kilometer traverse reveals electromagnetic properties and bedrock stratigraphy of the Jezero crater floor to depths of ~15 meters below the surface. The radar image reveals the presence of ubiquitous strongly reflecting layered sequences that dip downward at angles of up to 15 degrees from horizontal in directions normal to the curvilinear boundary of and away from the exposed section of the Séitah formation. The observed slopes, thicknesses, and internal morphology of the inclined stratigraphic sections can be interpreted either as magmatic layering formed in a differentiated igneous body or as sedimentary layering commonly formed in aqueous environments on Earth. The discovery of buried structures on the Jezero crater floor is potentially compatible with a history of igneous activity and a history of multiple aqueous episodes.

3.
Space Sci Rev ; 216(8)2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33568875

RESUMO

The Mars 2020 Perseverance rover landing site is located within Jezero crater, a ∼ 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.

4.
IEEE J Biomed Health Inform ; 19(3): 938-48, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25861089

RESUMO

Ultrawideband (UWB) radio technology for wireless implants has gained significant attention. UWB enables the fabrication of faster and smaller transceivers with ultralow power consumption, which may be integrated into more sophisticated implantable biomedical sensors and actuators. Nevertheless, the large path loss suffered by UWB signals propagating through inhomogeneous layers of biological tissues is a major hindering factor. For the optimal design of implantable transceivers, the accurate characterization of the UWB radio propagation in living biological tissues is indispensable. Channel measurements in phantoms and numerical simulations with digital anatomical models provide good initial insight into the expected path loss in complex propagation media like the human body, but they often fail to capture the effects of blood circulation, respiration, and temperature gradients of a living subject. Therefore, we performed UWB channel measurements within 1-6 GHz on two living porcine subjects because of the anatomical resemblance with an average human torso. We present for the first time, a path loss model derived from these in vivo measurements, which includes the frequency-dependent attenuation. The use of multiple on-body receiving antennas to combat the high propagation losses in implant radio channels was also investigated.


Assuntos
Próteses e Implantes , Ondas de Rádio , Telemetria/instrumentação , Animais , Simulação por Computador , Feminino , Desenho de Prótese , Processamento de Sinais Assistido por Computador , Suínos
5.
IEEE Trans Biomed Circuits Syst ; 8(5): 704-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25350945

RESUMO

Radar systems for detection of human heartbeats have mostly been single-channel systems with limited spatial resolution. In this paper, a radar system for ultra-wideband (UWB) imaging of the human heart is presented. To make the radar waves penetrate the human tissue the antenna is placed very close to the body. The antenna is an array with eight elements, and an antenna switch system connects the radar to the individual elements in sequence to form an image. Successive images are used to build up time-lapse movies of the beating heart. Measurements on a human test subject are presented and the heart motion is estimated at different locations inside the body. The movies show rhythmic motion consistent with the beating heart, and the location and shape of the reflections correspond well with the expected response form the heart wall. The spatial dependent heart motion is compared to ECG recordings, and it is confirmed that heartbeat modulations are seen in the radar data. This work shows that radar imaging of the human heart may provide valuable information on the mechanical movement of the heart.


Assuntos
Técnicas de Imagem Cardíaca/instrumentação , Técnicas de Imagem Cardíaca/métodos , Coração/anatomia & histologia , Coração/fisiologia , Processamento de Sinais Assistido por Computador , Adulto , Algoritmos , Campos Eletromagnéticos , Desenho de Equipamento , Humanos , Masculino , Movimento
6.
Artigo em Inglês | MEDLINE | ID: mdl-24110046

RESUMO

In this paper the optimal frequency range for heartbeat measurements using body-contact radar is experimentally evaluated. A Body-contact radar senses electromagnetic waves that have penetrated the human body, but the range of frequencies that can be used are limited by the electric properties of the human tissue. The optimal frequency range is an important property needed for the design of body-contact radar systems for heartbeat measurements. In this study heartbeats are measured using three different antennas at discrete frequencies from 0.1 - 10 GHz, and the strength of the received heartbeat signal is calculated. To characterize the antennas, when in contact with the body, two port S-parameters(†) are measured for the antennas using a pork rib as a phantom for the human body. The results shows that frequencies up to 2.5 GHz can be used for heartbeat measurements with body-contact radar.


Assuntos
Monitorização Ambulatorial/instrumentação , Animais , Frequência Cardíaca , Humanos , Imagens de Fantasmas , Radar , Costelas , Sus scrofa
7.
IEEE Trans Biomed Eng ; 60(4): 1142-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23192469

RESUMO

There has been research interest in using radar for contactless measurements of the human heartbeat for several years. While many systems have been demonstrated, not much attention have been given to the actual physical causes of why this work. The consensus seems to be that the radar senses small body movements correlated with heartbeats, but whether only the movements of the body surface or reflections from internal organs are also monitored have not been answered definitely. There has recently been proposed another theory that blood perfusion in the skin could be the main reason radars are able to detect heartbeats. In this paper, an experimental approach is given to determine the physical causes. The measurement results show that it is the body surface reflections that dominate radar measurements of human heartbeats.


Assuntos
Frequência Cardíaca/fisiologia , Radar , Ondas de Rádio , Adulto , Humanos , Masculino , Modelos Teóricos , Monitorização Fisiológica/métodos , Fluxo Sanguíneo Regional/fisiologia , Pele/irrigação sanguínea , Tórax/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...