Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 636: 610-620, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29723834

RESUMO

Metalimnetic oxygen minimum zones (MOMs) commonly develop during the summer stratified period in freshwater reservoirs because of both natural processes and water quality management. While several previous studies have examined the causes of MOMs, much less is known about their effects, especially on reservoir biogeochemistry. MOMs create distinct redox gradients in the water column which may alter the magnitude and vertical distribution of dissolved methane (CH4) and carbon dioxide (CO2). The vertical distribution and diffusive efflux of CH4 and CO2 was monitored for two consecutive open-water seasons in a eutrophic reservoir that develops MOMs as a result of the operation of water quality engineering systems. During both summers, elevated concentrations of CH4 accumulated within the anoxic MOM, reaching a maximum of 120 µM, and elevated concentrations of CO2 accumulated in the oxic hypolimnion, reaching a maximum of 780 µM. Interestingly, the largest observed diffusive CH4 effluxes occurred before fall turnover in both years, while peak diffusive CO2 effluxes occurred both before and during turnover. Our data indicate that MOMs can substantially change the vertical distribution of CH4 and CO2 in the water column in reservoirs, resulting in the accumulation of CH4 in the metalimnion (vs. at the sediments) and CO2 in the hypolimnion.

2.
Water Res ; 106: 1-14, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693994

RESUMO

The accumulation of Fe and Mn in seasonally stratified drinking water reservoirs adversely impacts water quality. To control issues with Fe and Mn at the source, some drinking water utilities have deployed hypolimnetic oxygenation systems to create well-oxygenated conditions in the water column that are favorable for the oxidation, and thus removal, of Fe and Mn. However, in addition to being controlled by dissolved oxygen (DO), Fe and Mn concentrations are also influenced by pH and metal-oxidizing microorganisms. We studied the response of Fe and Mn concentrations to hypolimnetic oxygenation in a shallow drinking water reservoir in Vinton, Virginia, USA by sequentially activating and deactivating an oxygenation system over two summers. We found that maintaining well-oxygenated conditions effectively prevented the accumulation of soluble Fe in the hypolimnion. However, while the rate of Mn oxidation increased under well-oxygenated conditions, soluble Mn still accumulated in the slightly acidic to neutral (pH 5.6 to 7.5) hypolimnion. In parallel, we conducted laboratory incubation experiments, which showed that the presence of Mn-oxidizing microorganisms increased the rate of Mn oxidation in comparison with rates under oxic, abiotic conditions. Combined, our field and laboratory results demonstrate that increasing DO concentrations in the water column is important for stimulating the oxidation of Fe and Mn, but that the successful management of Mn is also tied to the activity of Mn-oxidizing organisms in the water column and favorable (neutral to alkaline) pH.


Assuntos
Água Potável , Manganês/química , Ferro/química , Oxigênio , Purificação da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...