Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 140(12): 3179-3190, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29087445

RESUMO

See Fujita and Eidelberg (doi:10.1093/brain/awx305) for a scientific commentary on this article. Focal dystonias are the most common type of isolated dystonia. Although their causative pathophysiology remains unclear, it is thought to involve abnormal functioning of the basal ganglia-thalamo-cortical circuitry. We used high-resolution research tomography with the radioligand 11C-NNC-112 to examine striatal dopamine D1 receptor function in two independent groups of patients, writer's cramp and laryngeal dystonia, compared to healthy controls. We found that availability of dopamine D1 receptors was significantly increased in bilateral putamen by 19.6­22.5% in writer's cramp and in right putamen and caudate nucleus by 24.6­26.8% in laryngeal dystonia (all P ≤ 0.009). This suggests hyperactivity of the direct basal ganglia pathway in focal dystonia. Our findings paralleled abnormally decreased dopaminergic function via the indirect basal ganglia pathway and decreased symptom-induced phasic striatal dopamine release in writer's cramp and laryngeal dystonia. When examining topological distribution of dopamine D1 and D2 receptor abnormalities in these forms of dystonia, we found abnormal separation of direct and indirect pathways within the striatum, with negligible, if any, overlap between the two pathways and with the regions of phasic dopamine release. However, despite topological disorganization of dopaminergic function, alterations of dopamine D1 and D2 receptors were somatotopically localized within the striatal hand and larynx representations in writer's cramp and laryngeal dystonia, respectively. This finding points to their direct relevance to disorder-characteristic clinical features. Increased D1 receptor availability showed significant negative correlations with dystonia duration but not its severity, likely representing a developmental endophenotype of this disorder. In conclusion, a comprehensive pathophysiological mechanism of abnormal basal ganglia function in focal dystonia is built upon upregulated dopamine D1 receptors that abnormally increase excitation of the direct pathway, downregulated dopamine D2 receptors that abnormally decrease inhibition within the indirect pathway, and weakened nigro-striatal phasic dopamine release during symptomatic task performance. Collectively, these aberrations of striatal dopaminergic function underlie imbalance between direct and indirect basal ganglia pathways and lead to abnormal thalamo-motor-cortical hyperexcitability in dystonia.


Assuntos
Gânglios da Base/diagnóstico por imagem , Gânglios da Base/metabolismo , Distúrbios Distônicos/diagnóstico por imagem , Distúrbios Distônicos/metabolismo , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/metabolismo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Dopamina D1/metabolismo
2.
J Neurosci ; 36(12): 3471-80, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-27013676

RESUMO

Inhibitory interneurons in the neocortex often connect in a promiscuous and extensive fashion, extending a "blanket of inhibition" on the circuit. This raises the problem of how can excitatory activity propagate in the midst of this widespread inhibition. One solution to this problem could be the vasoactive intestinal peptide (VIP) interneurons, which disinhibit other interneurons. To explore how VIP interneurons affect the local circuits, we use two-photon optogenetics to activate them individually in mouse visual cortex in vivo while measuring their output with two-photon calcium imaging. We find that VIP interneurons have narrow axons and inhibit nearby somatostatin interneurons, which themselves inhibit pyramidal cells. Moreover, via this lateral disinhibition, VIP cells in vivo make local and transient "holes" in the inhibitory blanket extended by SOM cells. VIP interneurons, themselves regulated by neuromodulators, may therefore enable selective patterns of activity to propagate through the cortex, by generating a "spotlight of attention". SIGNIFICANCE STATEMENT: Most inhibitory interneurons have axons restricted to a nearby area and target excitatory neighbors indiscriminately, raising the issue of how neuronal activity can propagate through cortical circuits. Vasoactive intestinal peptide-expressing interneurons (VIPs) disinhibit cortical pyramidal cells through inhibition of other inhibitory interneurons, and they have very focused, "narrow" axons. By optogenetically activating single VIPs in live mice while recording the activity of nearby neurons, we find that VIPs break open a hole in blanket inhibition with an effective range of ∼120 µm in lateral cortical space where excitatory activity can propagate.


Assuntos
Lateralidade Funcional/fisiologia , Interneurônios/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Peptídeo Intestinal Vasoativo/metabolismo , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...