Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38928723

RESUMO

Cardiovascular diseases (CVDs) remain a major global health challenge and a leading cause of mortality, highlighting the need for improved predictive models. We introduce an innovative agent-based dynamic simulation technique that enhances our AI models' capacity to predict CVD progression. This method simulates individual patient responses to various cardiovascular risk factors, improving prediction accuracy and detail. Also, by incorporating an ensemble learning model and interface of web application in the context of CVD prediction, we developed an AI dashboard-based model to enhance the accuracy of disease prediction and provide a user-friendly app. The performance of traditional algorithms was notable, with Ensemble learning and XGBoost achieving accuracies of 91% and 95%, respectively. A significant aspect of our research was the integration of these models into a streamlit-based interface, enhancing user accessibility and experience. The streamlit application achieved a predictive accuracy of 97%, demonstrating the efficacy of combining advanced AI techniques with user-centered web applications in medical prediction scenarios. This 97% confidence level was evaluated by Brier score and calibration curve. The design of the streamlit application facilitates seamless interaction between complex ML models and end-users, including clinicians and patients, supporting its use in real-time clinical settings. While the study offers new insights into AI-driven CVD prediction, we acknowledge limitations such as the dataset size. In our research, we have successfully validated our predictive proposed methodology against an external clinical setting, demonstrating its robustness and accuracy in a real-world fixture. The validation process confirmed the model's efficacy in the early detection of CVDs, reinforcing its potential for integration into clinical workflows to aid in proactive patient care and management. Future research directions include expanding the dataset, exploring additional algorithms, and conducting clinical trials to validate our findings. This research provides a valuable foundation for future studies, aiming to make significant strides against CVDs.

2.
Diagnostics (Basel) ; 14(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732334

RESUMO

Early pregnancy loss (EPL) is a prevalent health concern with significant implications globally for gestational health. This research leverages machine learning to enhance the prediction of EPL and to differentiate between typical pregnancies and those at elevated risk during the initial trimester. We employed different machine learning methodologies, from conventional models to more advanced ones such as deep learning and multilayer perceptron models. Results from both classical and advanced machine learning models were evaluated using confusion matrices, cross-validation techniques, and analysis of feature significance to obtain correct decisions among algorithmic strategies on early pregnancy loss and the vitamin D serum connection in gestational health. The results demonstrated that machine learning is a powerful tool for accurately predicting EPL, with advanced models such as deep learning and multilayer perceptron outperforming classical ones. Linear discriminant analysis and quadratic discriminant analysis algorithms were shown to have 98 % accuracy in predicting pregnancy loss outcomes. Key determinants of EPL were identified, including levels of maternal serum vitamin D. In addition, prior pregnancy outcomes and maternal age are crucial factors in gestational health. This study's findings highlight the potential of machine learning in enhancing predictions related to EPL that can contribute to improved gestational health outcomes for mothers and infants.

3.
Entropy (Basel) ; 26(5)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38785675

RESUMO

Arguments inspired by algorithmic information theory predict an inverse relation between the probability and complexity of output patterns in a wide range of input-output maps. This phenomenon is known as simplicity bias. By viewing the parameters of dynamical systems as inputs, and the resulting (digitised) trajectories as outputs, we study simplicity bias in the logistic map, Gauss map, sine map, Bernoulli map, and tent map. We find that the logistic map, Gauss map, and sine map all exhibit simplicity bias upon sampling of map initial values and parameter values, but the Bernoulli map and tent map do not. The simplicity bias upper bound on the output pattern probability is used to make a priori predictions regarding the probability of output patterns. In some cases, the predictions are surprisingly accurate, given that almost no details of the underlying dynamical systems are assumed. More generally, we argue that studying probability-complexity relationships may be a useful tool when studying patterns in dynamical systems.

4.
Entropy (Basel) ; 22(7)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33286494

RESUMO

Many dimensionality and model reduction techniques rely on estimating dominant eigenfunctions of associated dynamical operators from data. Important examples include the Koopman operator and its generator, but also the Schrödinger operator. We propose a kernel-based method for the approximation of differential operators in reproducing kernel Hilbert spaces and show how eigenfunctions can be estimated by solving auxiliary matrix eigenvalue problems. The resulting algorithms are applied to molecular dynamics and quantum chemistry examples. Furthermore, we exploit that, under certain conditions, the Schrödinger operator can be transformed into a Kolmogorov backward operator corresponding to a drift-diffusion process and vice versa. This allows us to apply methods developed for the analysis of high-dimensional stochastic differential equations to quantum mechanical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA