Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38361426

RESUMO

Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteoma/metabolismo , Dobramento de Proteína , RNA/metabolismo , Solubilidade , Proteômica , Ponto Isoelétrico , Agregados Proteicos , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Espectrometria de Massas
2.
Cell Death Discov ; 7(1): 194, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312369

RESUMO

Testis development, including early embryonic gonad formation and late postnatal spermatogenesis, is essential for the reproduction of higher metazoans to generate fertile gametes, called sperm. We have previously reported that the polyubiquitin gene Ubb is required for fertility in both male and female mice. In particular, the Ubb-null male mice showed an azoospermia phenotype due to arrest of spermatogenesis at the pachytene stage. Here, we analyzed the whole testis proteome at postnatal day 20 to define the molecular mediators of the male-infertility phenotype caused by Ubb knockout. From the identified proteome, 564 proteins were significantly and differentially expressed in Ubb-knockout testes and, among these, 36 downregulated proteins were involved at different stages of spermatogenesis. We also found that levels of piRNA metabolic process-related proteins, including Piwil2 and Tdrd1, were downregulated in Ubb-null testes through functional gene ontology analysis. Further, protein-protein interaction mapping revealed that 24 testis development-related proteins, including Hsp90aa1, Eef1a1, and Pabpc1, were directly influenced by the depletion of ubiquitin. In addition, the reduced mRNA levels of these proteins were observed in Ubb-knockout testes, which closely resembled the global downregulation of piRNA-metabolic gene expression at the transcriptional and post-transcriptional levels. Together with proteomic and transcriptional analyses, our data suggest that Ubb expression is essential for the maintenance of testicular RNA-binding regulators and piRNA-metabolic proteins to complete spermatogenesis in mice.

3.
FEBS Lett ; 595(5): 604-622, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33452674

RESUMO

Signal transducer and activator of transcription 3 (STAT3) has been considered as a potential target for development of anticancer therapeutics. Here, we report a novel mechanism by which the cyclopentenone prostaglandin, 15-deoxy-Δ12,14 -prostaglandin J2 (15d-PGJ2 ) functions as an allosteric inhibitor of STAT3. 15d-PGJ2 inhibits phosphorylation, dimerization, nuclear translocation, and transcriptional activity of STAT3 in H-Ras-transformed human mammary epithelial cells (MCF10A-Ras) through the Michael addition reaction at cysteine 259 of STAT3. Comparative studies with 15d-PGJ2 analogues reveal that both C12-C13 and C9-C10 double bonds conjugated to the carbonyl group in the cyclopentenone ring of 15d-PGJ2 are essential for STAT3 binding. Antiproliferative and pro-apoptotic activities of 15d-PGJ2 in MCF10A-Ras cells are attributable to covalent modification of STAT3 on Cys259, and mimic the effects induced by mutation of this amino acid.


Assuntos
Antineoplásicos/farmacologia , Cisteína/química , Células Epiteliais/efeitos dos fármacos , Prostaglandina D2/análogos & derivados , Proteínas Proto-Oncogênicas p21(ras)/genética , Fator de Transcrição STAT3/antagonistas & inibidores , Sequência de Aminoácidos , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Transformada , Proliferação de Células/efeitos dos fármacos , Cisteína/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/patologia , Fosforilação/efeitos dos fármacos , Prostaglandina D2/química , Prostaglandina D2/farmacologia , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Relação Estrutura-Atividade , Transcrição Gênica
4.
Redox Biol ; 23: 101175, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31129031

RESUMO

Overproduction of prostaglandin E2 (PGE2) has been linked to enhanced tumor cell proliferation, invasiveness and metastasis as well as resistance to apoptosis. 15-Keto prostaglandin E2 (15-keto PGE2), a product formed from 15-hydroxyprostaglandin dehydrogenase-catalyzed oxidation of PGE2, has recently been shown to have anti-inflammatory and anticarcinogenic activities. In this study, we observed that 15-keto PGE2 suppressed the phosphorylation, dimerization and nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in human mammary epithelial cells transfected with H-ras (MCF10A-ras). 15-Keto PGE2 inhibited the migration and clonogenicity of MCF10A-ras cells. In addition, subcutaneous injection of 15-keto PGE2 attenuated xenograft tumor growth and phosphorylation of STAT3 induced by breast cancer MDA-MB-231 cells. However, a non-electrophilic analogue, 13,14-dihydro-15-keto PGE2 failed to inhibit STAT3 signaling and was unable to suppress the growth and transformation of MCF10A-ras cells. These findings suggest that the α,ß-unsaturated carbonyl moiety of 15-keto PGE2 is essential for its suppression of STAT3 signaling. We observed that the thiol reducing agent, dithiothreitol abrogated 15-keto PGE2-induced STAT3 inactivation and disrupted the direct interaction between 15-keto PGE2 and STAT3. Furthermore, a molecular docking analysis suggested that Cys251 and Cys259 residues of STAT3 could be preferential binding sites for this lipid mediator. Mass spectral analysis revealed the covalent modification of recombinant STAT3 by 15-keto PGE2 at Cys259. Taken together, thiol modification of STAT3 by 15-keto PGE2 inactivates STAT3 which may account for its suppression of breast cancer cell proliferation and progression.


Assuntos
Neoplasias da Mama/metabolismo , Dinoprostona/análogos & derivados , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Animais , Biomarcadores , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Dinoprostona/química , Dinoprostona/metabolismo , Dinoprostona/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Camundongos , Fosforilação , Ligação Proteica , Proteômica/métodos , Fator de Transcrição STAT3/química , Fator de Transcrição STAT3/genética , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Nat Commun ; 8(1): 102, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740232

RESUMO

Macroautophagy mediates the selective degradation of proteins and non-proteinaceous cellular constituents. Here, we show that the N-end rule pathway modulates macroautophagy. In this mechanism, the autophagic adapter p62/SQSTM1/Sequestosome-1 is an N-recognin that binds type-1 and type-2 N-terminal degrons (N-degrons), including arginine (Nt-Arg). Both types of N-degrons bind its ZZ domain. By employing three-dimensional modeling, we developed synthetic ligands to p62 ZZ domain. The binding of Nt-Arg and synthetic ligands to ZZ domain facilitates disulfide bond-linked aggregation of p62 and p62 interaction with LC3, leading to the delivery of p62 and its cargoes to the autophagosome. Upon binding to its ligand, p62 acts as a modulator of macroautophagy, inducing autophagosome biogenesis. Through these dual functions, cells can activate p62 and induce selective autophagy upon the accumulation of autophagic cargoes. We also propose that p62 mediates the crosstalk between the ubiquitin-proteasome system and autophagy through its binding Nt-Arg and other N-degrons.Soluble misfolded proteins that fail to be degraded by the ubiquitin proteasome system (UPS) are redirected to autophagy via specific adaptors, such as p62. Here the authors show that p62 recognises N-degrons in these proteins, acting as a N-recognin from the proteolytic N-end rule pathway, and targets these cargos to autophagosomal degradation.


Assuntos
Autofagossomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal , Animais , Arginina/metabolismo , Autofagia , Sítios de Ligação , Western Blotting , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Camundongos Knockout , Microscopia Confocal , Modelos Moleculares , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Domínios Proteicos , Proteólise , Proteína Sequestossoma-1/química , Proteína Sequestossoma-1/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...