Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 894545, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620680

RESUMO

Rice cultivation needs extensive amounts of water. Moreover, increased frequency of droughts and water scarcity has become a global concern for rice cultivation. Hence, optimization of water use is crucial for sustainable agriculture. Here, we characterized Loose Plant Architecture 1 (LPA1) in vasculature development, water transport, drought resistance, and grain yield. We performed genetic combination of lpa1 with semi-dwarf mutant to offer the optimum rice architecture for more efficient water use. LPA1 expressed in pre-vascular cells of leaf primordia regulates genes associated with carbohydrate metabolism and cell enlargement. Thus, it plays a role in metaxylem enlargement of the aerial organs. Narrow metaxylem of lpa1 exhibit leaves curling on sunny day and convey drought tolerance but reduce grain yield in mature plants. However, the genetic combination of lpa1 with semi-dwarf mutant (dep1-ko or d2) offer optimal water supply and drought resistance without impacting grain-filling rates. Our results show that water use, and transports can be genetically controlled by optimizing metaxylem vessel size and plant height, which may be utilized for enhancing drought tolerance and offers the potential solution to face the more frequent harsh climate condition in the future.

2.
Rice (N Y) ; 12(1): 62, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399805

RESUMO

BACKGROUND: Internode elongation is an important agronomic trait in rice that determines culm length, which is related to lodging, panicle exsertion, and biomass. sui4 (shortened uppermost internode 4) mutants show reduced internode length and a dwarf phenotype due to shortened internodes; the uppermost internode is particularly severely affected. The present study was performed to identify the molecular nature and function of the SUI4 gene during internode elongation. RESULTS: Our previous study showed that the SUI4 gene was mapped to a 1.1-Mb interval on chromosome 7 (Ji et al. 2014). In order to isolate the gene responsible for the sui4 phenotype, genomic DNA resequencing of sui4 mutants and wild-type plants and reciprocal transformation of wild-type and mutant alleles of the putative SUI4 gene was performed. The data revealed that the causative mutation of sui4 was a T to A nucleotide substitution at the microRNA172 binding site of Os07g0235800, and that SUI4 is a new allele of the previously reported gene SUPERNUMERARY BRACT (SNB), which affects flower structure. In order to understand the effect of this mutation on expression of the SUI4/SNB gene, SUI4/SNB native promoter-fuzed GUS transgenics were examined, along with qRT-PCR analysis at various developmental stages. In sui4 mutants, the SUI4/SNB gene was upregulated in the leaves, culms, and panicles, especially when internodes were elongated. In culms, SUI4/SNB was expressed in the nodes and the lower parts of elongating internodes. In order to further explore the molecular nature of SUI4/SNB during internode elongation, RNA-seq and qRT-PCR analysis were performed with RNAs from the culms of sui4 mutants and wild-type plants in the booting stage. The data showed that in sui4 mutants, genes deactivating bioactive gibberellins and cytokinin were upregulated while genes related to cell expansion and cell wall synthesis were downregulated. CONCLUSION: In summary, this paper shows that interaction between SUI4/SNB and microRNA172 could determine internode elongation during the reproductive stage in rice plants. Due to a mutation at the microRNA172 binding site in sui4 mutants, the expression of SUI4/SNB was enhanced, which lowered the activities of cell expansion and cell wall synthesis and consequently resulted in shortened internodes.

3.
Ann Bot ; 124(6): 947-960, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30715138

RESUMO

BACKGROUND AND AIMS: INDETERMINATE DOMAIN 10 (IDD10) is a key transcription factor gene that activates the expression of a large number of NH4+-responsive genes including AMMONIUM TRANSPORTER 1;2 (AMT1;2). Primary root growth of rice (Oryza sativa) idd10 mutants is hypersensitive to NH4+. The involvement of CALCINEURIN B-LIKE INTERACTING PROTEIN KINASE (CIPK) genes in the action of IDD10 on NH4+-mediated root growth was investigated. METHODS: Quantitative reverse transcription-PCR was used to analyse NH4+- and IDD10-dependent expression of CIPK genes. IDD10-regulated CIPK target genes were identified using electrophoretic mobility shift assays, chromatin immunoprecipitation and transient transcription assays. Root growth rate, ammonium content and 15N uptake of cipk mutants were measured to determine their sensitivity to NH4+ and to compare these phenotypes with those of idd10. The genetic relationship between CIPK9 OX and idd10 was investigated by crosses between the CIPK9 and IDD10 lines. KEY RESULTS: AMT1;2 was overexpressed in idd10 to determine whether NH4+-hypersensitive root growth of idd10 resulted from limitations in NH4+ uptake or from low cellular levels of NH4+. High NH4+ levels in idd10/AMT1;2 OX did not rescue the root growth defect. Next, the involvement of CIPK genes in NH4+-dependent root growth and interactions between IDD10 and CIPK genes was investigated. Molecular analysis revealed that IDD10 directly activated transcription of CIPK9 and CIPK14. Expression of CIPK8, 9, 14/15 and 23 was sensitive to exogenous NH4+. Further studies revealed that cipk9 and idd10 had almost identical NH4+-sensitive root phenotypes, including low efficiency of 15NH4+ uptake. Analysis of plants containing both idd10 and CIPK9 OX showed that CIPK9 OX could rescue the NH4+-dependent root growth defects of idd10. CONCLUSIONS: CIPK9 was involved in NH4+-dependent root growth and appeared to act downstream of IDD10. This information will be useful in future explorations of NH4+ signalling in plants.


Assuntos
Compostos de Amônio , Oryza , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Raízes de Plantas , Proteínas Quinases
4.
J Exp Bot ; 68(3): 727-737, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28035023

RESUMO

The promotive effects of brassinosteroids (BRs) on plant growth and development have been widely investigated; however, it is not known whether BRs directly affect nutrient uptake. Here, we explored the possibility of a direct relationship between BRs and ammonium uptake via AMT1-type genes in rice (Oryza sativa). BR treatment increased the expression of AMT1;1 and AMT1;2, whereas in the mutant d61-1, which is defective in the BR-receptor gene BRI1, BR-dependent expression of these genes was suppressed. We then employed Related to ABI3/VP1-Like 1 (RAVL1), which is involved in BR homeostasis, to investigate BR-mediated AMT1 expression and its effect on NH4+ uptake in rice roots. AMT1;2 expression was lower in the ravl1 mutant, but higher in the RAVL1-overexpressing lines. EMSA and ChIP analyses showed that RAVL1 activates the expression of AMT1;2 by directly binding to E-box motifs in its promoter. Moreover, 15NH4+ uptake, cellular ammonium contents, and root responses to methyl-ammonium strongly depended on RAVL1 levels. Analysing AMT1;2 expression levels in different crosses between BRI1 and RAVL1 mutant and overexpression lines indicated that RAVL1 acts downstream of BRI1 in the regulation of AMT1;2. Thus, the present study shows how BRs may be involved in the transcriptional regulation of nutrient transporters to modulate their uptake capacity.


Assuntos
Brassinosteroides/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo
5.
New Phytol ; 213(1): 314-323, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27716929

RESUMO

Root hairs are filamentous protuberances from superficial cells of plant roots that are critical for nutrient uptake. Genes encoding ROOT HAIR DEFECTIVE-SIX LIKE (RSL) class I basic helix-loop-helix proteins are expressed in future root hair cells (trichoblasts) of the Arabidopsis thaliana root where they positively regulate root hair cell development. We characterized the function of class I genes in Oryza sativa root development. We show that there are three RSL class I genes in O. sativa and that each is expressed in developing root hair cells. Reduction of RSL class I function results in the development of shorter root hairs than in wild-type. Ectopic overexpression results in the development of ectopic root hair cells. These data suggest that expression of individual RSL class I proteins is sufficient for root hair development in the cereal O. sativa (rice). Therefore RSL class I genes have been conserved since O. sativa and A. thaliana last shared a common ancestor. However, given that RSL class I genes are not sufficient for root hair development in A. thaliana, it suggests that there are differences in the mechanisms repressing RSL class I gene activity between members of the Poaceae and Brassicaceae.


Assuntos
Genes de Plantas , Oryza/crescimento & desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Morfogênese/efeitos dos fármacos , Oryza/ultraestrutura , Filogenia , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/ultraestrutura , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
6.
Methods Mol Biol ; 1469: 49-61, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27557685

RESUMO

Closely-located transposable elements (TEs) have been known to induce chromosomal breakage and rearrangements via alternative transposition. To study genome rearrangements in rice, an Ac/Ds system has been employed. This system comprises an immobile Ac element expressed under the control of CaMV 35S promoter, and a modified Ds element. A starter line carried Ac and a single copy of Ds at the OsRLG5 (Oryza sativa receptor-like gene 5). To enhance the transpositional activity, seed-derived calli were cultured and regenerated into plants. Among 270 lines regenerated from the starter, one line was selected that contained a pair of inversely-oriented Ds elements at the OsRLG5 (Oryza sativa receptor-like gene 5). The selected line was again subjected to tissue culture to obtain a regenerant population. Among 300 regenerated plants, 107 (36 %) contained chromosomal rearrangements including deletions, duplications, and inversions of various sizes. From 34 plants, transposition mechanisms leading to such genomic rearrangements were analyzed. The rearrangements were induced by sister chromatid transposition (SCT), homologous recombination (HR), and single chromatid transposition (SLCT). Among them, 22 events (65 %) were found to be transmitted to the next generation. These results demonstrate a great potential of tissue culture regeneration and the Ac/Ds system in understanding alternative transposition mechanisms and in developing chromosome engineering in plants.


Assuntos
Elementos de DNA Transponíveis , Oryza/genética , Plantas Geneticamente Modificadas/genética , Técnicas de Cultura de Tecidos/métodos , Southern Blotting , Cromátides/genética , Inversão Cromossômica , Cromossomos de Plantas , Recombinação Homóloga , Família Multigênica , Mutação , Oryza/citologia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase , Deleção de Sequência
7.
J Plant Physiol ; 200: 62-75, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27340859

RESUMO

Nitrogen (N) is the most important macronutrient for plant growth and grain yields. For rice crops, nitrate and ammonium are the major N sources. To explore the genomic responses to ammonium supplements in rice roots, we used 17-day-old seedlings grown in the absence of external N that were then exposed to 0.5mM (NH4)2SO4 for 3h. Transcriptomic profiles were examined by microarray experiments. In all, 634 genes were up-regulated at least two-fold by the N-supplement when compared with expression in roots from untreated control plants. Gene Ontology (GO) enrichment analysis revealed that those upregulated genes are associated with 23 GO terms. Among them, metabolic processes for diverse amino acids (i.e., aspartate, threonine, tryptophan, glutamine, l-phenylalanine, and thiamin) as well as nitrogen compounds are highly over-represented, demonstrating that our selected genes are suitable for studying the N-response in roots. This enrichment analysis also indicated that nitrogen is closely linked to diverse transporter activities by primary metabolites, including proteins (amino acids), lipids, and carbohydrates, and is associated with carbohydrate catabolism and cell wall organization. Integration of results from omics analysis of metabolic pathways and transcriptome data using the MapMan tool suggested that the TCA cycle and pathway for mitochondrial electron transport are co-regulated when rice roots are exposed to ammonium. We also investigated the expression of N-responsive marker genes by performing a comparative analysis with root samples from plants grown under different NH4(+) treatments. The diverse responses to such treatment provide useful insight into the global changes related to the shift from an N-deficiency to an enhanced N-supply in rice, a model crop plant.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genoma de Planta , Nitrogênio/farmacologia , Oryza/genética , Raízes de Plantas/genética , Plântula/genética , Compostos de Amônio/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/genética , Ontologia Genética , Genes de Plantas , Estudos de Associação Genética , Oryza/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Locos de Características Quantitativas/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Plântula/efeitos dos fármacos
8.
J Exp Bot ; 67(6): 1883-95, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26826218

RESUMO

Lamina inclination is a key agronomical character that determines plant architecture and is sensitive to auxin and brassinosteroids (BRs). Loose Plant Architecture1 (LPA1) in rice (Oryza sativa) and its Arabidopsis homologues (SGR5/AtIDD15) have been reported to control plant architecture and auxin homeostasis. This study explores the role of LPA1 in determining lamina inclination in rice. LPA1 acts as a positive regulator to suppress lamina bending. Genetic and biochemical data indicate that LPA1 suppresses the auxin signalling that interacts with C-22-hydroxylated and 6-deoxo BRs, which regulates lamina inclination independently of OsBRI1. Mutant lpa1 plants are hypersensitive to indole-3-acetic acid (IAA) during the lamina inclination response, which is suppressed by the brassinazole (Brz) inhibitor of C-22 hydroxylase involved in BR synthesis. A strong synergic effect is detected between lpa1 and d2 (the defective mutant for catalysis of C-23-hydroxylated BRs) during IAA-mediated lamina inclination. No significant interaction between LPA1 and OsBRI1 was identified. The lpa1 mutant is sensitive to C-22-hydroxylated and 6-deoxo BRs in the d61-1 (rice BRI1 mutant) background. We present evidence verifying that two independent pathways function via either BRs or BRI1 to determine IAA-mediated lamina inclination in rice. RNA sequencing analysis and qRT-PCR indicate that LPA1 influences the expression of three OsPIN genes (OsPIN1a, OsPIN1c and OsPIN3a), which suggests that auxin flux might be an important factor in LPA1-mediated lamina inclination in rice.


Assuntos
Brassinosteroides/farmacologia , Ácidos Indolacéticos/metabolismo , Oryza/fisiologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Transdução de Sinais , Alelos , Fenômenos Biomecânicos/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Hidroxilação , Mutação/genética , Oryza/efeitos dos fármacos , Oryza/genética , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
9.
Curr Protoc Plant Biol ; 1(3): 466-487, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31725960

RESUMO

Rice (Oryza sativa) is the most important consumed staple food for a large and diverse population worldwide. Since databases of genomic sequences became available, functional genomics and genetic manipulations have been widely practiced in rice research communities. Insertional mutants are the most common genetic materials utilized to analyze gene function. To mutagenize rice genomes, we exploited the transpositional activity of an Activator/Dissociation (Ac/Ds) system in rice. To mobilize Ds in rice genomes, a maize Ac cDNA was expressed under the CaMV35S promoter, and a gene trap Ds was utilized to detect expression of host genes via the reporter gene GUS. Conventional transposon-mediated gene-tagging systems rely on genetic crossing and selection markers. Furthermore, the activities of transposases have to be monitored. By taking advantage of the fact that Ds becomes highly active during tissue culture, a plant regeneration system employing tissue culture was employed to generate a large Ds transposant population in rice. This system overcomes the requirement for markers and the monitoring of Ac activity. In the regenerated populations, more than 70% of the plant lines contained independent Ds insertions and 12% expressed GUS at seedling stages. This protocol describes the method for producing a Ds-mediated insertional population via tissue culture regeneration systems. © 2016 by John Wiley & Sons, Inc.

10.
Rice (N Y) ; 6(1): 6, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24280451

RESUMO

BACKGROUND: Anther culture has advantage to obtain a homozygous progeny by induced doubling of haploid chromosomes and to improve selection efficiency for invaluable agronomical traits. Therefore, anther culturing is widely utilized to breed new varieties and to induce genetic variations in several crops including rice. Genome sequencing technologies allow the detection of a massive number of DNA polymorphism such as SNPs and Indels between closely related cultivars. These DNA polymorphisms permit the rapid identification of genetic diversity among cultivars and genomic locations of heritable traits. To estimate sequence diversity derived from anther culturing, we performed whole-genome resequencing of five Korean rice accessions, including three anther culture lines (BLB, HY-04 and HY-08), their progenitor cultivar (Hwayeong), and an additional japonica cultivar (Dongjin). RESULTS: A total of 1,165 × 106 raw reads were generated with over 58× coverage that detected 1,154,063 DNA polymorphisms between the Korean rice accessions and Nipponbare. We observed that in Hwayeong and its progenies, 0.64 SNP was found per one kb of Nipponbare genome, while Dongjin, bred by a conventional breeding method, had a lower number of SNPs (0.45 SNP/kb). Among 1,154,063 DNA polymorphisms, 29,269 non-synonymous SNPs located on 30,013 genes and these genes were functionally classified based on gene ontology (GO). We also analyzed line-specific SNPs which were estimated 1 ~ 3% of the total SNPs. The frequency of non-synonymous SNPs in each accession ranged from 26 SNPs in Hwayeong to 214 SNPs in HY-04. CONCLUSIONS: The genetic difference we detected between the progenies derived from anther culture and their mother cultivar is due to somaclonal variation during tissue culture process, such as karyotype change, chromosome rearrangement, gene amplification and deletion, transposable element, and DNA methylation. Detection of genome-wide DNA polymorphisms by high-throughput sequencer enabled to identify sequence diversity derived from anther culturing and genomic locations of heritable traits. Furthermore, it will provide an invaluable resource to identify molecular markers and genes associated with diverse traits of agronomical importance.

11.
Methods Mol Biol ; 1057: 101-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23918423

RESUMO

To mutagenize rice genomes, a two-element system is utilized. This system comprises an immobile Ac element driven by the CaMV 35S promoter, and a gene trap Ds carrying a partial intron with alternative splice acceptors fused to the GUS coding region. Rapid, large-scale generation of a Ds transposant population was achieved using a plant regeneration procedure involving the tissue culture of seed-derived calli carrying Ac and Ds elements. During tissue cultures, Ds mobility accompanies changes in methylation patterns of a terminal region of Ds, where over 70% of plants contained independent Ds insertions. In the transposon population, around 12% of plants expressed GUS at the early seedling stage. A flanking-sequence-tag (FST) database has been established by cloning over 19,968 Ds insertion sites and the Ds map shows relatively uniform distribution across the rice chromosomes.


Assuntos
Elementos de DNA Transponíveis/genética , Engenharia Genética/métodos , Mutagênese , Oryza/crescimento & desenvolvimento , Oryza/genética , Regeneração , Sequência de Bases , DNA de Plantas/genética , Genômica , Plantas Geneticamente Modificadas , Fatores de Tempo , Técnicas de Cultura de Tecidos
12.
Plant Signal Behav ; 8(8)2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23733059

RESUMO

By using a forward genetic approach, a formin homology 1 gene (OsFH1) was identified as a critical regulator of rice root hair development. The phenotypic effect of OsFH1 on root hair development was verified by using three independent mutants, one point mutation and two T-DNA insertions. The study showed that OsFH1 is required for the elongation of root-hairs. However, Osfh1 exhibited growth defect of root hairs only when roots were grown submerged in solution. To understand how OsFH1 impinges on plant responses to root submergence, the growth responses of Osfh1 root hairs to anoxia, carbohydrate supplementation and exogenous hormones (auxin and ethylene) and nutrients (Fe and Pi) were examined. However, none of these treatments rescued the growth defects of Osfhl1 root hairs. This study demonstrates that OsFH1 could be involved in preventing submergence-induced inhibition of root hair growth.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Água/metabolismo , Mutação/genética , Oryza/citologia , Fenótipo , Raízes de Plantas/citologia
13.
Plant Mol Biol ; 82(1-2): 39-50, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23456248

RESUMO

Rice is cultivated in water-logged paddy lands. Thus, rice root hairs on the epidermal layers are exposed to a different redox status of nitrogen species, organic acids, and metal ions than root hairs growing in drained soil. To identify genes that play an important role in root hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified and isolated by using map-based cloning and sequencing. The mutation arose from a single amino acid substitution of OsSNDP1 (Oryza sativa Sec14-nodulin domain protein), which shows high sequence homology with Arabidopsis COW1/AtSFH1 and encodes a phosphatidylinositol transfer protein (PITP). By performing complementation assays with Atsfh1 mutants, we demonstrated that OsSNDP1 is involved in growth of root hairs. Cryo-scanning electron microscopy was utilized to further characterize the effect of the Ossndp1 mutation on root hair morphology. Aberrant morphogenesis was detected in root hair elongation and maturation zones. Many root hairs were branched and showed irregular shapes due to bulged nodes. Many epidermal cells also produced dome-shaped root hairs, which indicated that root hair elongation ceased at an early stage. These studies showed that PITP-mediated phospholipid signaling and metabolism is critical for root hair elongation in rice.


Assuntos
Proteínas de Membrana/química , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Sequência de Aminoácidos , Arabidopsis/genética , Sequência de Bases , Distribuição de Qui-Quadrado , Segregação de Cromossomos , Clonagem Molecular , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação/genética , Oryza/genética , Oryza/ultraestrutura , Fenótipo , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/citologia , Raízes de Plantas/ultraestrutura , Brotos de Planta/anatomia & histologia , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência
14.
Plant Signal Behav ; 8(5): e24139, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23470720

RESUMO

One of the strategies that plants utilize to adapt to fluctuating soil nutrient levels is rapid reprogramming of transcriptional regulation via cell signaling mechanisms. Higher plants exposed to ammonium undergo modulation of a broad spectrum of gene expression. However, regulation of the transcriptional mechanisms underlying ammonium-mediated gene expression is poorly understood. We identified a transcriptional regulator, indeterminate domain 10 (IDD10), whose mutants exhibited an ammonium-hypersensitive root growth defect. To elucidate the molecular relationship between IDD10 and ammonium-mediated gene expression, ammonium-responsive genes were examined in mutants and overexpressors of IDD10. Among the key ammonium uptake and assimilation genes, AMT1;2 (ammonium transporter 1;2) and GDH2 (glutamate dehydrogenase 2) significantly depend on IDD10 expression levels for ammonium-mediated induction. Extensive molecular analysis revealed that IDD10 directly binds to the promoter of AMT1;2 and the fifth intron of GDH2 genes via the core sequence TTTGTC(C)/(G). Transcriptome analysis with root tissues identified many ammonium-inducible genes whose expression was increased by IDD10. Half of them contained potential IDD10-binding motifs in their promoters. This study determined that IDD10 is a transcriptional activator involved in nitrogen regulatory circuits that control a broad spectrum of gene expression, which might influence root growth in rice.


Assuntos
Compostos de Amônio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oryza/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Modelos Biológicos , Oryza/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
15.
New Phytol ; 197(3): 791-804, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23278238

RESUMO

Indeterminate domain (IDD) genes are a family of plant transcriptional regulators that function in the control of development and metabolism during growth. Here, the function of Oryza sativa indeterminate domain 10 (OsIDD10) has been explored in rice plants. Compared with wild-type roots, idd10 mutant roots are hypersensitive to exogenous ammonium. This work aims to define the action of IDD10 on gene expression involved in ammonium uptake and nitrogen (N) metabolism. The ammonium induction of key ammonium uptake and assimilation genes was examined in the roots of idd10 mutants and IDD10 overexpressors. Molecular studies and transcriptome analysis were performed to identify target genes and IDD10 binding cis-elements. IDD10 activates the transcription of AMT1;2 and GDH2 by binding to a cis-element motif present in the promoter region of AMT1;2 and in the fifth intron of GDH2. IDD10 contributes significantly to the induction of several genes involved in N-linked metabolic and cellular responses, including genes encoding glutamine synthetase 2, nitrite reductases and trehalose-6-phosphate synthase. Furthermore, the possibility that IDD10 might influence the N-mediated feedback regulation of target genes was examined. This study demonstrates that IDD10 is involved in regulatory circuits that determine N-mediated gene expression in plant roots.


Assuntos
Oryza/genética , Proteínas de Plantas/fisiologia , Compostos de Amônio Quaternário/farmacologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glutamina/farmacologia , Metionina Sulfoximina/farmacologia , Dados de Sequência Molecular , Mutagênese Insercional , Nitrogênio/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Planta ; 237(5): 1227-39, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23334469

RESUMO

The outgrowth of root hairs from the epidermal cell layer is regulated by a strict genetic regulatory system and external growth conditions. Rice plants cultivated in water-logged paddy land are exposed to a soil ecology that differs from the environment surrounding upland plants, such as Arabidopsis and maize. To identify genes that play important roles in root-hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified, and the gene was isolated using map-based cloning and sequencing. The mutant harbored a point mutation at a splicing acceptor site, which led to truncation of OsFH1 (rice formin homology 1). Subsequent analysis of two additional T-DNA mutants verified that OsFH1 is important for root-hair elongation. Further studies revealed that the action of OsFH1 on root-hair growth is dependent on growth conditions. The mutant Osfh1 exhibited root-hair defects when roots were grown submerged in solution, and mutant roots produced normal root hairs in the air. However, root-hair phenotypes of mutants were not influenced by the external supply of hormones or carbohydrates, a deficiency of nutrients, such as Fe or P i , or aeration. This study shows that OsFH1 plays a significant role in root-hair elongation in a growth condition-dependent manner.


Assuntos
Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética
17.
Mob Genet Elements ; 2(2): 67-71, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22934239

RESUMO

A closely-linked pair of Ac/Ds elements induces chromosomal rearrangements in Arabidopsis and maize. This report summarizes the Ac/Ds systems that generate an exceptionally high frequency of chromosomal rearrangements in rice genomes. From a line containing a single Ds element inserted at the OsRLG5 locus, plants containing a closely-linked pair of inversely-oriented Ds elements were obtained at 1% frequency among the population regenerated from tissue culture. Subsequent regeneration of the lines containing cis-paired Ds elements via tissue culture led to a high frequency (35.6%) of plants containing chromosomal rearrangements at the OsRLG5 locus. Thirty-four rearrangement events were characterized, revealing diverse chromosomal aberrations including deletions, inversions and duplications. Many rearrangements could be explained by sister chromatid transposition (SCT) and homologous recombination (HR), events previously demonstrated in Arabidopsis and maize. In addition, novel events were detected and presumably generated via a new alternative transposition mechanism. This mechanism, termed single chromatid transposition (SLCT), resulted in juxtaposed inversions and deletions on the same chromosome. This study demonstrated that the Ac/Ds system coupled with tissue culture-mediated plant regeneration could induce higher frequencies and a greater diversity of chromosomal rearrangements than previously reported. Understanding transposon-induced chromosomal rearrangements can provide new insights into the relationship between transposable elements and genome evolution, as well as a means to perform chromosomal engineering for crop improvement. Rice is a staple cereal crop worldwide. Complete genome sequencing and rich genetic resources are great advantages for the study of the genomic complexity induced by transposable elements.(1) (-) (2) The combination of tissue culture with genetic lines carrying a pair of closely located Ac/Ds elements greatly increases the frequency and diversity of rearrangements in rice genomes. The methodology and its efficiency and significance are briefly summarized.

18.
Planta ; 235(2): 387-97, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21927949

RESUMO

In eukaryotes, the cell cycle consists of four distinct phases: G1, S, G2 and M. In certain condition, the cells skip M-phase and undergo endoreduplication. Endoreduplication, occurring during a modified cell cycle, duplicates the entire genome without being followed by M-phase. A cycle of endoreduplication is common in most of the differentiated cells of plant vegetative tissues and it occurs extensively in cereal endosperm cells. Endoreduplication occurs when CDK/Cyclin complex low or inactive caused by ubiquitin-mediated degradation by APC and their activators. In this study, rice cell cycle switch 52 A (OsCCS52A), an APC activator, is functionally characterized using the reverse genetic approach. In rice, OsCCS52A is highly expressed in seedlings, flowers, immature panicles and 15 DAP kernels. Localization studies revealed that OsCCS52A is a nuclear protein. OsCCS52A interacts with OsCdc16 in yeast. In addition, overexpression of OsCCS52A inhibits mitotic cell division and induces endoreduplication and cell elongation in fission yeast. The homozygous mutant exhibits dwarfism and smaller seeds. Further analysis demonstrated that endoreduplication cycles in the endosperm of mutant seeds were disturbed, evidenced by reduced nuclear and cell sizes. Taken together, these results suggest that OsCCS52A is involved in maintaining normal seed size formation by mediating the exit from mitotic cell division to enter the endoreduplication cycles in rice endosperm.


Assuntos
Endosperma/genética , Oryza/genética , Proteínas de Plantas/metabolismo , RNA de Plantas/genética , Sequência de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Crescimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Tamanho Celular , Clonagem Molecular , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mitose , Dados de Sequência Molecular , Mutação , Fases de Leitura Aberta , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polinização , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo
19.
Nucleic Acids Res ; 39(22): e149, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21965541

RESUMO

Previous studies have shown that pairs of closely-linked Ac/Ds transposable elements can induce various chromosomal rearrangements in plant genomes. To study chromosomal rearrangements in rice, we isolated a line (OsRLG5-161) that contains two inversely-oriented Ds insertions in OsRLG5 (Oryza sativa Receptor like kinase Gene 5). Among approximately 300 plants regenerated from OsRLG5-161 heterozygous seeds, 107 contained rearrangements including deletions, duplications and inversions of various sizes. Most rearrangements were induced by previously identified alternative transposition mechanism. Furthermore, we also detected a new class of rearrangements that contain juxtaposed inversions and deletions on the same chromosome. We propose that these novel alleles were generated by a previously unreported type of alternative transposition reactions involving the 5' and 3' termini of two inversely-oriented Ds elements located on the same chromatid. Finally, 11% of rearrangements contained inversions resulting from homologous recombination between the two inverted Ds elements in OsRLG5-161. The high frequency inheritance and great variety of rearrangements obtained suggests that the rice regeneration system results in a burst of transposition activity and a relaxation of the controls which normally limit the transposition competence of individual Ds termini. Together, these results demonstrate a greatly enlarged potential of the Ac/Ds system for plant chromosome engineering.


Assuntos
Aberrações Cromossômicas , Cromossomos de Plantas , Elementos de DNA Transponíveis , Oryza/genética , Cromátides/genética , Deleção Cromossômica , Inversão Cromossômica , Genes de Plantas , Loci Gênicos , Recombinação Homóloga
20.
FEBS Lett ; 585(17): 2640-6, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21819985

RESUMO

Up to now, d-threo-tetrahydrobiopterin (DH(4), dictyopterin) was detected only in Dictyostelium discoideum, while the isomer L-erythro-tetrahydrobioterin (BH(4)) is common in mammals. To elucidate the mechanism of DH(4) regeneration by D. discoideum dihydropteridine reductase (DicDHPR), we have determined the crystal structure of DicDHPR complexed with NAD(+) at 2.16 Å resolution. Significant structural differences from mammalian DHPRs are found around the coenzyme binding site, resulting in a higher K(m) value for NADH (K(m)=46.51±0.4 µM) than mammals. In addition, we have found that rat DHPR as well as DicDHPR could bind to both substrates quinonoid-BH(2) and quinonoid-DH(2) by docking calculations and have confirmed their catalytic activity by in vitro assay.


Assuntos
Biopterinas/análogos & derivados , Dictyostelium/enzimologia , Di-Hidropteridina Redutase/metabolismo , Animais , Biopterinas/química , Biopterinas/metabolismo , Estrutura Secundária de Proteína , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...