Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(25): 17114-17121, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38870413

RESUMO

Near-infrared luminescent rare-earth organic complexes have attracted intensive attention in the field of optical waveguide amplification. However, their optical gains were commonly less than 4 dB/cm due to limited doping concentrations. Herein, two one-dimensional (1D) Nd3+ coordination chains, namely, [Nd(TTA)3(DBTDPO)]n (Nd1) and [Nd(TTA)3(DPEPO)]n (Nd2), bridged by phosphine oxide ligands were developed for the neodymium-doped waveguide amplifier. Despite its P-P distance being similar to DBTDPO, the different P═O orientation of DPEPO renders markedly shorter intra- and interchain Nd-Nd distances for Nd2 in comparison to Nd1. Furthermore, the weaker intermolecular interactions alleviate the quenching effect for Nd2. Therefore, Nd2 can provide more locally concentrated and radiative Nd3+ ions, leading to a larger Nd3+-characteristic 1.06 µm emission intensity and duration than Nd1. Based on embedded and evanescent-field waveguide structures, Nd2 achieves state-of-the-art gain maxima of 5.7 and 4.9 dB/cm as well as outstanding gain stability. These results indicate that controllable coordination assembly of lanthanide ions in multidimension provides a flexible approach to combine local high-density outputs and effective suppression of quenching.

2.
Nat Commun ; 15(1): 4997, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866737

RESUMO

Despite potential in high-resolution and low-cost displays and lighting, multi-doping structures and low concentrations (<1%) limit repeatability and stability of single-emissive-layer white light-emitting devices. Herein, we report a singly doped white-emitting system of blue thermally activated delayed fluorescence host matrix (CzAcSF) doped by yellow Cu4I4 cluster ([tBCzDppy]2Cu4I4). CzAcSF:x% [tBCzDppy]2Cu4I4 films realize photo- and electro-luminescence colors from cool white to warm white at x = 20-40. The external quantum efficiency of 23.5% was achieved at x = 30, indicating the record-high efficiency among solution-processed analogs and the largest doping concentration among efficient white light-emitting devices. It shows that di(tert-butyl)carbazole moieties in [tBCzDppy]2Cu4I4 provide high-lying excited energy levels at~2.6 eV to mediate energy transfer from CzAcSF (2.9 eV) to coordinated Cu4I4 (2.2 eV). Our results demonstrate the antenna effect of ligands on optimizing charge and energy transfer in organic-cluster systems and superiority of white cluster light-emitting diodes in practical applications.

4.
Nat Commun ; 15(1): 3705, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38697970

RESUMO

Organic ultralong room-temperature phosphorescence (RTP) usually emerges instantly and immediately decays after excitation removal. Here we report a new delayed RTP that is postponed by dozens of milliseconds after excitation removal and decays in two steps including an initial increase in intensity followed by subsequent decrease in intensity. The delayed RTP is achieved through introduction of phosphines into carbazole emitters. In contrast to the rapid energy transfer from single-molecular triplet states (T1) to stabilized triplet states (Tn*) of instant RTP systems, phosphine groups insert their intermediate states (TM) between carbazole-originated T1 and Tn* of carbazole-phosphine hybrids. In addition to markedly increasing emission lifetimes by ten folds, since TM → Tn* transition require >30 milliseconds, RTP is thereby postponed by dozens of milliseconds. The emission character of carbazole-phosphine hybrids can be used to reveal information through combining instant and delayed RTP, realizing multi-level time resolution for advanced information, biological and optoelectronic applications.

5.
Toxicol Appl Pharmacol ; 485: 116876, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437955

RESUMO

BACKGROUND: Olanzapine antagonizes dopamine receptors and is prescribed to treat multiple psychiatric conditions. The main side effect of concern for olanzapine is weight gain and metabolic syndrome. Olanzapine induces hyperprolactinemia, however its effect on the mammary gland is poorly documented. METHODS: Rats received olanzapine by gavage or in drinking water at 1, 3, and 6 mg/kg/day for 5-40 days or 100 days, with and without coadministration of bromocriptine or aripiprazole and using once daily or continuous administration strategies. Histomorphology of the mammary gland, concentrations of prolactin, estradiol, progesterone, and olanzapine in serum, mammary gland and adipose tissue, and mRNA and protein expressions of prolactin receptors were analyzed. RESULTS: In adult and prepubescent female rats and male rats, olanzapine induced significant development of mammary glands in dose- and time-dependent manners, with histopathological hyperplasia of mammary ducts and alveoli with lumen dilation and secretion, marked increase of mammary prolactin receptor expression, a marker of breast tissue, and with mild increase of circulating prolactin. This side effect can be reversed after medication withdrawal, but long-term olanzapine treatment for 100 days implicated tumorigenic potentials indicated by usual ductal epithelial hyperplasia. Olanzapine induced mammary development was prevented with the coaddition of the dopamine agonist bromocriptine or partial agonist aripiprazole, or by continuous administration of medication instead of a once daily regimen. CONCLUSIONS: These results shed light on the previously overlooked effect of olanzapine on mammary development and present experimental evidence to support current clinical management strategies of antipsychotic induced side effects in the breast.


Assuntos
Antipsicóticos , Aripiprazol , Benzodiazepinas , Bromocriptina , Glândulas Mamárias Animais , Olanzapina , Prolactina , Animais , Olanzapina/toxicidade , Feminino , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/patologia , Aripiprazol/toxicidade , Ratos , Prolactina/sangue , Antipsicóticos/toxicidade , Antipsicóticos/efeitos adversos , Benzodiazepinas/toxicidade , Masculino , Ratos Sprague-Dawley , Receptores da Prolactina/metabolismo , Estradiol/sangue , Relação Dose-Resposta a Droga , Progesterona/sangue , Quinolonas/toxicidade , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Piperazinas/toxicidade
6.
Sci Adv ; 10(1): eadk3983, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38181079

RESUMO

Multicomponent excited states endow copper iodide clusters with allochroic properties under diverse stimuli. However, crystal states are required, and cluster stimulus sensitivity hampers electroluminochromism. We developed PhQPCu3X3 (X = Cl, Br, and I) with the first µ3-bridging tetraphosphine ligand, whose Cu3X3 crowns were exposed to external stimulus. The increased proportion of Cu3X3 results in equal contributions of cluster- and ligand-centered components to excited states, the former of which is highly sensitive to grind, vapor, and, especially, electric stimuli, due to semi-exposed Cu3X3. Through vacuum evaporation and vapor fumigation of cluster-based emissive layers, the diodes' electroluminescence colors changed from yellow to white. Joule heat during device operation induced further color variation to orange, corresponding to Commission Internationale de l'Eclairage coordinates of PhQPCu3I3 changed from (0.44 ± 0.1, 0.34 ± 0.1) to (0.57 ± 0.1, 0.42 ± 0.1). These results demonstrate the superiority of luminescent clusters in accurate excited-state modulation, holding promise for wide applications.

7.
Angew Chem Int Ed Engl ; 63(5): e202316479, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38055193

RESUMO

Efficient ultraviolet (UV) electroluminescent materials remain a great challenge, since short peak wavelength <400 nm and narrow full width at half maximum (FWHM) <50 nm are simultaneously required. In this sense, multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters featuring narrow-band emissions hold the promise for UV applications. Herein, a novel MR-TADF skeleton featuring carbazole-phosphine oxide (P=O) fused aromatics is developed to construct the first two UV MR emitters named CzP2PO and tBCzP2PO. In addition to synergistic resonance effects of P=O and N atom, sp3 -hybrid P atom renders the curved polycyclic planes of CzP2PO and tBCzP2PO, giving rise to their narrowband UV emissions with peak wavelengths <390 nm and FWHM<35 nm. Besides configuration quasi-planarization for radiation enhancement and quenching suppression, P=O moiety further enhances singlet-triplet coupling to facilitate reverse intersystem crossing, resulting in the state-of-the-art photoluminescence quantum yield of 62 % in tBCzP2PO doped films. As consequence, tBCzP2PO endowed its UV organic light-emitting diodes with the peak at 382 nm and FWHM of 32 nm, and especially the record-high external quantum efficiency (EQE) of 15.1 % among all kinds of UV devices. Our results demonstrate great potential of P=O based MR emitters in practical applications including optoelectronics, biology and medicine science.

8.
Lipids Health Dis ; 22(1): 222, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093311

RESUMO

BACKGROUND: Previous studies demonstrated that mast cells with their degranulated component heparin are the major endogenous factors that stimulate preadipocyte differentiation and promote fascial adipogenesis, and this effect is related to the structure of heparin. Regarding the structural and physiological properties of the negatively charged polymers, hexasulfonated suramin, a centuries-old medicine that is still used for treating African trypanosomiasis and onchocerciasis, is assumed to be a heparin-related analog or heparinoid. This investigation aims to elucidate the influence of suramin on the adipogenesis. METHODS: To assess the influence exerted by suramin on adipogenic differentiation of primary white adipocytes in rats, this exploration was conducted both in vitro and in vivo. Moreover, it was attempted to explore the role played by the sulfonic acid groups present in suramin in mediating this adipogenic process. RESULTS: Suramin demonstrated a dose- and time-dependent propensity to stimulate the adipogenic differentiation of rat preadipocytes isolated from the superficial fascia tissue and from adult adipose tissue. This stimulation was concomitant with a notable upregulation in expression levels of pivotal adipogenic factors as the adipocyte differentiation process unfolded. Intraperitoneal injection of suramin into rats slightly increased adipogenesis in the superficial fascia and in the epididymal and inguinal fat depots. PPADS, NF023, and NF449 are suramin analogs respectively containing 2, 6, and 8 sulfonic acid groups, among which the last two moderately promoted lipid droplet formation and adipocyte differentiation. The number and position of sulfonate groups may be related to the adipogenic effect of suramin. CONCLUSIONS: Suramin emerges as a noteworthy pharmaceutical agent with the unique capability to significantly induce adipocyte differentiation, thereby fostering adipogenesis.


Assuntos
Adipogenia , Suramina , Ratos , Animais , Suramina/farmacologia , Antiparasitários/farmacologia , Diferenciação Celular , Adipócitos Brancos , Heparina/farmacologia
9.
Angew Chem Int Ed Engl ; 62(39): e202308410, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37578640

RESUMO

Electroluminescent (EL) clusters emerged rapidly, owing to their organic-inorganic hybrid character useful for comprehensive performance integration and the potential for large-scale display and lighting applications. However, despite their good photoluminescent (PL) properties, until present, no efficient EL monodentate ligand-based clusters were reported due to structural variation during processing and excitation and exciton confinement on cluster-centered quenching states. Here we demonstrate an effective bulky passivation strategy for efficient cluster light-emitting diodes with a monophosphine Cu4 I4 cube named [TMeOPP]4 Cu4 I4 . With terminal pyridine groups, an active matrix named TmPyPB supports an effective host-cluster interplay for configuration fixation, structural stabilization, and exciton-confinement optimization. Compared to common inactive hosts, the passivation effects of TmPyPB markedly reduce trap-state densities by 24-40 % to suppress nonradiative decay, resulting in state-of-the-art PL and EL quantum yields reaching 99 % and 15.6 %, respectively, which are significantly improved by about 7-fold. TmPyPB simultaneously increases EL luminance to 104 nits, which is ≈100-fold that of the non-doped analogue.

10.
Adv Mater ; 35(41): e2304103, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37401728

RESUMO

Through-space charge transfer (TSCT) is crucial for developing highly efficient thermally activated delayed fluorescence polymers. The balance of intra- and interchain TSCT can markedly improve performance, but it is still a big challenge. In this work, an effective strategy for "intra- and interchain TSCT balance" is demonstrated by way of a series of non-conjugated copolymers containing a 9,9-dimethylacridine donor and triazine-phosphine oxide (PO)-based acceptors. Steady-state and transient emission spectra indicate that compared to the corresponding blends, the copolymers can indeed achieve balanced intra- and interchain TSCT by accurately optimizing the inductive and steric effects of the acceptors. The DPOT acceptor with the strongest electron-withdrawing ability and the second bigger steric hindrance endows its copolymers with state-of-the-art photoluminescence and electroluminescence quantum efficiencies beyond 95% and 32%, respectively. This demonstrates that, compared to other congeners, the synergistic inductive and steric effects effectively enhance TSCT in DPOT-based copolymers for radiation, and suppress singlet and triplet quenching. The record-high efficiencies of its devices make this kind of copolymers hold the potential for low-cost, large-scale, and high-efficiency applications.

11.
Adv Mater ; 35(36): e2302984, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37267437

RESUMO

Defect is one of the key factors limiting optoelectronic performances of organic-inorganic hybrid systems. Although high-efficiency bidentate ligands based electroluminescent (EL) clusters reported, until present, only few EL clusters based on monodentate ligands are realized since their structural instability induces more surface/interface defects. Herein, this bottleneck is first overcome in virtue of interfacial passivation by electron transporting layers (ETL). Through using TmPyPB with meta-linked pyridines as ETL, photoluminescent (PL) and EL quantum efficiencies of the simplest monophosphine Cu4 I4 cube [TPP]4 Cu4 I4 are greatly improved by ≈2 and 23 folds, respectively, as well as ≈200 folds increased luminance, corresponding to a huge leap from nearly unlighted (<20 nits) to highly bright (>3000 nits). The passivation effect of TmPyPB on surface defects of cluster layer is embodied as preventing interfacial charge trapping and suppressing exciton nonradiation.

12.
Angew Chem Int Ed Engl ; 62(27): e202305018, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129949

RESUMO

Clusters combine the advantages of organic molecules and inorganic nanomaterials, which are promising alternatives for optoelectronic applications. Nonetheless, recently emerged cluster light-emitting diodes require further excited state optimization of cluster emitters, especially to reduce population of the cluster-centered triplet quenching state (3 CC). Here we report that redox-active ligands enhance reverse intersystem crossing (RISC) of Cu4 I4 cluster for triplet-to-singlet conversion, and thermally activated delayed fluorescence (TADF) host can provide an external RISC channel. It indicates that the complementarity between TADF host and cluster in RISC transitions gives rise to 100 % triplet conversion efficiency and complete singlet exciton convergence, rendering 100-fold increased singlet radiation rate constant and tenfold decreased triplet non-radiation rate constant. We achieve a photoluminescence quantum yield of 99 % and a record external quantum efficiency of 29.4 %.

13.
Nat Commun ; 14(1): 2901, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217534

RESUMO

Luminescence clusters composed of organic ligands and metals have gained significant interests as scintillators owing to their great potential in high X-ray absorption, customizable radioluminescence, and solution processability at low temperatures. However, X-ray luminescence efficiency in clusters is primarily governed by the competition between radiative states from organic ligands and nonradiative cluster-centered charge transfer. Here we report that a class of Cu4I4 cubes exhibit highly emissive radioluminescence in response to X-ray irradiation through functionalizing biphosphine ligands with acridine. Mechanistic studies show that these clusters can efficiently absorb radiation ionization to generate electron-hole pairs and transfer them to ligands during thermalization for efficient radioluminescence through precise control over intramolecular charge transfer. Our experimental results indicate that copper/iodine-to-ligand and intraligand charge transfer states are predominant in radiative processes. We demonstrate that photoluminescence and electroluminescence quantum efficiencies of the clusters reach 95% and 25.6%, with the assistance of external triplet-to-singlet conversion by a thermally activated delayed fluorescence matrix. We further show the utility of the Cu4I4 scintillators in achieving a lowest X-ray detection limit of 77 nGy s-1 and a high X-ray imaging resolution of 12 line pairs per millimeter. Our study offers insights into universal luminescent mechanism and ligand engineering of cluster scintillators.

14.
Angew Chem Int Ed Engl ; 62(21): e202300980, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942404

RESUMO

Organic room temperature phosphorescence (RTP) attracts extensive attentions, but still faces the challenge of achieving both high RTP efficiencies (ηRTP ) and long lifetimes (τRTP ), due to the intrinsic contradiction between triplet radiation and stabilization. In this work, we developed three carbazole-triphenylphosphine hybrids named xCzTPP, in which phosphine groups provide nonbonding electrons and steric hindrance to modulate intermolecular p-π and π-π interactions. With the rational orientations and spatial positions of functional groups, para-substituted pCzTPP achieves high ηRTP over 10 % and more than twofold increased τRTP (>600 ms), compared to ortho- and meta- isomers. Theoretical simulation and photophysical investigation indicate that the strongest intermolecular p-π and π-π electronic interplays of pCzTPP harmonize high transition probability of 3 pπ state and triplet stability of 3 ππ state, reflecting the p-π and π-π synergy in RTP process.

15.
Angew Chem Int Ed Engl ; 61(47): e202213826, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36202754

RESUMO

The optoelectronic applications of clusters emerged rapidly. Cluster light-emitting diodes (CLED) as representative hold promise as a new generation of displays and lightings. However, as one of the main challenges in electroluminescence (EL) field, until present, no deep-blue CLEDs were reported, due to the strict requirements on excited-state characteristics of clusters. Herein, two phosphine-stabilized Au3 triangle and Au3 Ag pyramid named [O(Audppy)3 ]BF4 and [O(Audppy)3 Ag](BF4 )2 were chosen to demonstrate efficient deep-blue CLEDs. The ligand-incorporated charge transfer transitions of the clusters contribute to both singlet and triplet excited states of the clusters, giving rise to phosphorescence at 460 nm and EL emissions at 436 nm. Based on device engineering, the maximum luminescence beyond 8000 nits and the chromatic coordinates with y <0.1 in deep-blue region verify the competence of CLEDs for high-resolution displays.

16.
Research (Wash D C) ; 2022: 9838120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935131

RESUMO

Multiresonance (MR) emitters featuring narrowband emissions and theoretically 100% exciton harvesting are great potential for organic light-emitting diode (OLED) applications. However, how to functionalize MR molecules without scarifying emission color purity is still a key challenge. Herein, we report a feasible strategy for selective optimization of MR molecules, which is demonstrated by a blue MR emitter tCBNDASPO substituted with a diphenylphosphine oxide (DPPO) group. Compared to its DPPO-free parent molecule, tCBNDASPO preserves narrowband feature with full widths at half maximum (FWHM) values of 28 nm in film and 32 nm in OLEDs and achieves 40% increased photoluminescence (92%) and electroluminescence quantum efficiencies (28%). It is showed that insulation effect of P=O effectively confines the singlet excited state on MR core to keep emission color purity, and its induction effect enhances singlet radiation and triplet-to-singlet conversion. This synergism for selective optimization is based on rational linkage between MR core and functional groups.

17.
Adv Mater ; 34(17): e2110547, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35233858

RESUMO

Emerging multi-resonance (MR) thermally activated delayed fluorescence (TADF) emitters can combine 100% exciton harvesting and high color purity for their organic light-emitting diodes (OLED). However, the highly planar configurations of MR molecules lead to intermolecular-interaction-induced quenching. A feasible way is integrating host segments into MR molecules, namely a "self-host" strategy, but without involving additional charge transfer and/or vibrational components to excited states. Herein, an ambipolar self-host featured MR emitter, tCBNDADPO, is demonstrated, whose ambipolar host segment (DADPO) significantly and comprehensively improves the TADF properties, especially greatly accelerated singlet radiative rate constant of 2.11 × 108 s-1 and exponentially reduced nonradiative rate constants. Consequently, at the same time as preserving narrowband blue emission with an FWHM of ≈28 nm at a high doping concentration of 30%, tCBNDADPO reveals state-of-the-art photoluminescence and electroluminescence quantum efficiencies of 99% and 30%, respectively. The corresponding 100% internal quantum efficiency of tCBNDADPO supported by an ultrasimple trilayer and heavily doped device demonstrates the feasibility of the ambipolar self-host strategy for constructing practically applicable MR materials.

18.
J Am Chem Soc ; 144(14): 6551-6557, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35354283

RESUMO

Electroluminescent (EL) nanoclusters holding promise for new-generation cluster light-emitting devices (CLEDs) rapidly emerge. However, slow radiation and serious quenching of cluster emitters largely limit the device performance. Herein, we report two monofunctionalized biphosphine chelated Cu4I4 clusters [DMACDBFDP]2Cu4I4 and [DPACDBFDP]2Cu4I4. The asymmetric modification and electron-donating effect of acridine groups lead to the iodine-to-ligand charge transfer predominant excited states of the clusters, which feature thermally activated delayed fluorescence with markedly improved singlet radiative rate constants and reduced triplet nonradiative rate constants. As consequence, compared to the nonfunctionalized parent cluster, [DPACDBFDP]2Cu4I4 achieves 16-fold increased photoluminescence (81%) and 20-fold increased EL (19.5%) quantum efficiencies. Such new-record efficiencies make CLEDs achieve the state-of-the-art performance of all kinds of EL technologies.

19.
Chem Sci ; 12(43): 14519-14530, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34881003

RESUMO

A thermally activated delayed fluorescence (TADF) white organic light-emitting diode (WOLED) holds great promise for low-cost, large-scale lighting applications. Nevertheless, manipulating exciton allocation in a white TADF single layer is still a challenge. Herein, we demonstrate that the exciton kinetic process of dually doped white TADF films is strongly dependent on the grid regularity of the host matrix. Intermolecular hydrogen bonds (IHBs) are used to weave the matrices of two host molecules DPEQPO and DPSQPO featuring four phosphine oxide (PO) groups and different IHB orientations. The DPSQPO matrix forms regular grids to uniformly disperse and separate dopants, while DPEQPO exhibits chaotic IHBs, in turn inducing a heterogeneous dopant distribution. As a consequence, in both photoluminescence and electroluminescence processes, in contrast to DPEQPO hosted systems with comparable singlet Förster resonance energy transfer and triplet Dexter energy transfer, DPSQPO provides a FRET-predominant exciton allocation between blue and yellow dopants, which markedly suppresses triplet quenching and improves the white color purity, resulting in a state-of-the-art external quantum efficiency up to 24.2% of its single-emissive-layer pure-white TADF diode, in contrast to 16.0% for DPEQPO based analogs. These results indicate the significance of host engineering for exciton kinetics and suggest the feasibility of host grid design for developing high-performance TADF lighting.

20.
Angew Chem Int Ed Engl ; 60(47): 24894-24900, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34545993

RESUMO

Herein, we report a feasible molecular design of the binuclear clusters featuring the n-p-n heterojunction of biligand-sandwiched inorganic units, which can be used as the effective charge trapper in ambipolar transistor memories with the large memory windows and the energy-saving operation. We found that the hole confinement on the p-type inorganic units is enhanced by spatial electronic anisotropy provided by the peripheral n-type organic phosphine ligands. The steric hindrance of the coordination sites, the insulating effect of the carbon-phosphorous single bonds and the parallel dual-ligand coordination mode jointly elongate the interunit distances to nanometer scale and restrain the intramolecular electronic communications, leading to the tunable and reliable charge trapping. Our results show that the spatial effect is crucial to further amplifying the electronic differences between organic and inorganic units for function enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...