Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
ACS Omega ; 9(30): 33293-33300, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39100363

RESUMO

Layered alkali titanates of the lepidocrocite type are gaining enormous interest in various fields owing to their unique properties. These materials are mainly synthesized through a hydrothermal alkali treatment. However, this method uses a highly concentrated alkali solution, which has high environmental impacts and is therefore unsuitable for mass synthesis. Herein, we propose an efficient method for the large-scale synthesis of layered sodium titanate structures (Na2-x H x Ti2O5) using a recently reported bottom-up chemical process. The effects of the Na:Ti molar ratio in the peroxo-titanium complex ion precursor on the products are investigated through stoichiometric calculations for a molar ratio range of 10:1-1:1. The optimal ratio for the complete ionization of TiH2 (which is the starting material) to form the peroxo-titanium complex ion is found to be 1.1:1. The amount of alkali raw material required is 99.6% lower than that required in the traditional hydrothermal method. The crystal structures and morphologies of the samples are almost identical regardless of the Na:Ti molar ratio. The precursor-derived peroxo bonds narrow the energy band gaps of the layered titanates even when the amount of titanium ions dissolved in the precursor increases. The proposed method is not only an efficient synthetic route for mass production but also has potential applications in the development of photofunctional materials.

2.
Nanomaterials (Basel) ; 14(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39057847

RESUMO

Lepidocrocite-type layered sodium titanate (NaxH2-xTi2O5) is widely used in environmental remediation because of its large specific surface area, formed by anisotropic crystal growth, and its ability to store and exchange cations between layers. Additionally, peroxo-titanate nanotubes (PTNTs), which are tubular titanates with peroxy groups, exhibit visible-light absorption capabilities, rendering them suitable for photocatalytic applications under visible light irradiation. However, because of cation exchange reactions, the Na+ concentration and pH of the solution can fluctuate under aqueous conditions, affecting the photocatalytic performance of the PTNTs. Herein, we evaluated the impact of cation exchange reactions on the photocatalytic degradation of Rhodamine B (Rh B) by PTNTs at controlled Na+ ratios. The observed pH of Rh B solutions increases due to the cation exchange reaction with Na+ and H3O+, leading to the formation of zwitter-ionic Rh B molecules, eventually weakening their adsorption and photodegradation performance. Moreover, the results indicate that inhibiting the pH increase of the Rh B solution can prevent the weakening of both the adsorption and photodegradation performance of PTNTs. This study highlights the significance of regulating the sodium ion content in layered titanate materials, emphasizing their importance in optimizing these materials' photocatalytic efficacy for environmental purification applications.

3.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255548

RESUMO

Using melt-derived LD glass powders and 5-20 M NaOH solutions, porous lithium disilicate (Li2Si2O5, LD) glass-ceramics were prepared by the cold sintering process (CSP) associated with the post-annealing technique. In this novel technique, H2O vapor originating from condensation reactions between residual Si-OH groups in cold-sintered LD glasses played the role of a foaming agent. With the increasing concentration of NaOH solutions, many more residual Si-OH groups appeared, and then rising trends in number as well as size were found for spherical pores formed in the resultant porous LD glass-ceramics. Correspondingly, the total porosities and average pore sizes varied from 25.6 ± 1.3% to 48.6 ± 1.9% and from 1.89 ± 0.68 µm to 13.40 ± 10.27 µm, respectively. Meanwhile, both the volume fractions and average aspect ratios of precipitated LD crystals within their pore walls presented progressively increasing tendencies, ranging from 55.75% to 76.85% and from 4.18 to 6.53, respectively. Young's modulus and the hardness of pore walls for resultant porous LD glass-ceramics presented remarkable enhancement from 56.9 ± 2.5 GPa to 79.1 ± 2.1 GPa and from 4.6 ± 0.9 GPa to 8.1 ± 0.8 GPa, whereas their biaxial flexural strengths dropped from 152.0 ± 6.8 MPa to 77.4 ± 5.4 MPa. Using H2O vapor as a foaming agent, this work reveals that CSP associated with the post-annealing technique is a feasible and eco-friendly methodology by which to prepare porous glass-ceramics.

4.
Nanoscale Adv ; 4(17): 3573-3584, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36134343

RESUMO

Low-dimensional titanate nanostructures are gaining attention as a promising material for various photocatalytic applications. However, these conventional titanium oxide-based materials cannot utilize visible light because of their wide bandgap, and their synthesis generally requires high-alkali (10 mol L-1) and high-temperature (160-200 °C) conditions. Here, we report facile bottom-up synthesis for the visible light-activated peroxo-titanate nanoribbon (PTNR). The use of the peroxo-titanium complex ion containing the potassium ion as a precursor can induce the formation of a layered potassium titanate structure (K2-x H x Ti2O5) based on the self-organization reaction between titanium complex ions and potassium ions under mild synthetic conditions (0.29-4.39 mol L-1 KOH, 100 °C). Furthermore, the requirement of potassium ions in the formation of layered potassium titanate was stoichiometrically examined. The layered titanate crystals could be grown anisotropically, which depended on the radius of the cation used. Our results newly revealed that the larger radius of the interlayer cation promotes anisotropic crystal growth. As a result, in the case of the potassium base, a nanoribbon structure with a higher aspect ratio and larger specific surface area than those of lithium and sodium bases was formed. The formed peroxo-titanium functional groups significantly reduced the bandgap of titanate to 2.64 eV. In a photocatalytic decolorization test, the PTNR showed excellent photocatalytic performance based on the large surface area and enhanced light absorption in the visible light range while still performing well under UV light. These findings show not only that the proposed synthetic process has a low environmental impact but also that it contributes to the development of highly functionalized materials for photochemical applications.

5.
Chem Commun (Camb) ; 57(93): 12536-12539, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34751686

RESUMO

A facile bottom-up method for the synthesis of lithium titanate nanoplates using a peroxo titanium complex ion precursor is reported. Instead of employing complicated treatment with high alkali concentration, the self-organization reaction between lithium and titanium ions in the prepared ion precursor can enable the formation of layered lithium titanate crystals (Li2-xHxTi2O5, where x = 0.1 and 1.52 for as-synthesise and acid-treated samples, respectively) under low alkaline conditions. We demonstrate that layered lithium titanate crystals can be grown anisotropically into individual nanoplates. Our work presents an easy and useful platform for the production of titanate materials with various morphologies based on the interaction with ionic species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA