Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 12984-12999, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709897

RESUMO

Multivalent battery chemistries have been explored in response to the increasing demand for high-energy rechargeable batteries utilizing sustainable resources. Solvation structures of working cations have been recognized as a key component in the design of electrolytes; however, most structure-property correlations of metal ions in organic electrolytes usually build upon favorable static solvation structures, often overlooking solvent exchange dynamics. We here report the ion solvation structures and solvent exchange rates of magnesium electrolytes in various solvents by using multimodal nuclear magnetic resonance (NMR) analysis and molecular dynamics/density functional theory (MD/DFT) calculations. These magnesium solvation structures and solvent exchange dynamics are correlated to the combined effects of several physicochemical properties of the solvents. Moreover, Mg2+ transport and interfacial charge transfer efficiency are found to be closely correlated to the solvent exchange rate in the binary electrolytes where the solvent exchange is tunable by the fraction of diluent solvents. Our primary findings are (1) most battery-related solvents undergo ultraslow solvent exchange coordinating to Mg2+ (with time scales ranging from 0.5 µs to 5 ms), (2) the cation transport mechanism is a mixture of vehicular and structural diffusion even at the ultraslow exchange limit (with faster solvent exchange leading to faster cation transport), and (3) an interfacial model wherein organic-rich regions facilitate desolvation and inorganic regions promote Mg2+ transport is consistent with our NMR, electrochemistry, and cryogenic X-ray photoelectron spectroscopy (cryo-XPS) results. This observed ultraslow solvent exchange and its importance for ion transport and interfacial properties necessitate the judicious selection of solvents and informed design of electrolyte blends for multivalent electrolytes.

2.
J Phys Chem Lett ; 14(50): 11393-11399, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38079154

RESUMO

Aqueous electrolytes composed of 0.1 M zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2) and acetonitrile (ACN) were studied using combined experimental and simulation techniques. The electrolyte was found to be electrochemically stable when the ACN V% is higher than 74.4. In addition, it was found that the ionic conductivity of the mixed solvent electrolytes changes as a function of ACN composition, and a maximum was observed at 91.7 V% of ACN although the salt concentration is the same. This behavior was qualitatively reproduced by molecular dynamics (MD) simulations. Detailed analyses based on experiments and MD simulations show that at high ACN composition the water network existing in the high water composition solutions breaks. As a result, the screening effect of the solvent weakens and the correlation among ions increases, which causes a decrease in ionic conductivity at high ACN V%. This study provides a fundamental understanding of this complex mixed solvent electrolyte system.

3.
Nat Commun ; 14(1): 868, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797246

RESUMO

The electrochemical instability of ether-based electrolyte solutions hinders their practical applications in high-voltage Li metal batteries. To circumvent this issue, here, we propose a dilution strategy to lose the Li+/solvent interaction and use the dilute non-aqueous electrolyte solution in high-voltage lithium metal batteries. We demonstrate that in a non-polar dipropyl ether (DPE)-based electrolyte solution with lithium bis(fluorosulfonyl) imide salt, the decomposition order of solvated species can be adjusted to promote the Li+/salt-derived anion clusters decomposition over free ether solvent molecules. This selective mechanism favors the formation of a robust cathode electrolyte interphase (CEI) and a solvent-deficient electric double-layer structure at the positive electrode interface. When the DPE-based electrolyte is tested in combination with a Li metal negative electrode (50 µm thick) and a LiNi0.8Co0.1Mn0.1O2-based positive electrode (3.3 mAh/cm2) in pouch cell configuration at 25 °C, a specific discharge capacity retention of about 74% after 150 cycles (0.33 and 1 mA/cm2 charge and discharge, respectively) is obtained.

4.
JACS Au ; 2(4): 917-932, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35557755

RESUMO

Efforts to expand the technological capability of batteries have generated increased interest in divalent cationic systems. Electrolytes used for these electrochemical applications often incorporate cyclic ethers as electrolyte solvents; however, the detailed solvation environments within such systems are not well-understood. To foster insights into the solvation structures of such electrolytes, Ca(TFSI)2 and Zn(TFSI)2 dissolved in tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran were investigated through multi-nuclear magnetic resonance spectroscopy (17O, 43Ca, and 67Zn NMR) combined with quantum chemistry modeling of NMR chemical shifts. NMR provides spectroscopic fingerprints that readily couple with quantum chemistry to identify a set of most probable solvation structures based on the best agreement between the theoretically predicted and experimentally measured values of chemical shifts. The multi-nuclear approach significantly enhances confidence that the correct solvation structures are identified due to the required simultaneous agreement between theory and experiment for multiple nuclear spins. Furthermore, quantum chemistry modeling provides a comparison of the solvation cluster formation energetics, allowing further refinement of the preferred solvation structures. It is shown that a range of solvation structures coexist in most of these electrolytes, with significant molecular motion and dynamic exchange among the structures. This level of solvation diversity correlates with the solubility of the electrolyte, with Zn(TFSI)2/THF exhibiting the lowest degree of each. Comparisons of analogous Ca2+ and Zn2+ solvation structures reveal a significant cation size effect that is manifested in significantly reduced cation-solvent bond lengths and thus stronger solvent bonding for Zn2+ relative to Ca2+. The strength of this bonding is further reduced by methylation of the cyclic ether ring. Solvation shells containing anions are energetically preferred in all the studied electrolytes, leading to significant quantities of contact ion pairs and consequently neutrally charged clusters. It is likely that the transport and interfacial de-solvation/re-solvation properties of these electrolytes are directed by these anion interactions. These insights into the detailed solvation structures, cation size, and solvent effects, including the molecular dynamics, are fundamentally important for the rational design of electrolytes in multivalent battery electrolyte systems.

5.
ACS Appl Mater Interfaces ; 14(22): 25534-25544, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608361

RESUMO

We present a novel anode interface modification on the ß″-alumina solid-state electrolyte that improves the wetting behavior of molten sodium in battery applications. Heat treating a simple slurry, composed only of water, acetone, carbon black, and lead acetate, formed a porous carbon network decorated with PbOx (0 ≤ x ≤ 2) nanoparticles between 10 and 50 nm. Extensive performance analysis, through impedance spectroscopy and symmetric cycling, shows a stable, low-resistance interface for close to 6000 cycles. Furthermore, an intermediate temperature Na-S cell with a modified ß″-alumina solid-state electrolyte could achieve an average stable cycling capacity as high as 509 mA h/g. This modification drastically decreases the amount of Pb content to approximately 3% in the anode interface (6 wt % or 0.4 mol %) and could further eliminate the need for toxic Pb altogether by replacing it with environmentally benign Sn. Overall, in situ reduction of oxide nanoparticles created a high-performance anode interface, further enabling large-scale applications of liquid metal anodes with solid-state electrolytes.

6.
J Phys Chem B ; 126(16): 3135-3142, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420819

RESUMO

Microsized pore parameters, such as pore size and distance between pores in a series of model EPDM rubbers, were determined in situ under the pressure of 500 psi using 129Xe nuclear magnetic resonance (NMR) techniques: spin-lattice (T1) and spin-spin (T2) relaxation measurements, pulsed-field gradient (PFG) NMR, and two-dimensional exchange spectroscopy (2D EXSY). The T1/T2 (≫1) ratio for the xenon confined in the pores is larger than that for nonconfined free xenon. This suggests that almost the entire pore surface interacts with xenon atoms like a closed pore. While these pores still connect each other through very narrow diffusion/exchange channels, it is possible to observe the echo decay in PFG-NMR and cross-peaks in 2D EXSY. The results show that both diffusion (Dpore ≈ 2.1 × 10-10 m2/s) and exchange (exchange rate, τexch = a few tens of milliseconds) of xenon between a pore within the material and outer surface are prolonged. The exchange distances (l), which correspond to the xenon gas penetration depth, were estimated to be 70-100 µm based on the measured diffusion coefficients and exchange rate (1/τexch). NMR diffraction analysis reveals that pore size (a) and pore distance (b) are on the order of magnitude of micrometers and tens of micrometers, while the diffusion coefficients of xenon gas in the diffusion channels (Deff) are about 10-8 m2/s. Overall, this study suggests that the pores with a few micrometers connected through very narrow flowing channels with the length of several tens of micrometers are developed 70 to 100 µm below the rubber surface. Furthermore, the overall steady-state diffusion of xenon is slower, approximately 2 orders of magnitudes, than the diffusion in the channel between the pores. The pore and exchange distances correlated with the composition of rubbers showed that the properties of EPDM rubber as a high-pressure gas barrier could be improved by reducing the size of cracks and the depth of gas penetration by the addition of both carbon black and silica fillers.

7.
Phys Chem Chem Phys ; 24(2): 674-686, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908060

RESUMO

Ion interactions strongly determine the solvation environments of multivalent electrolytes even at concentrations below that required for practical battery-based energy storage. This statement is particularly true of electrolytes utilizing ethereal solvents due to their low dielectric constants. These solvents are among the most commonly used for multivalent batteries based on reactive metals (Mg, Ca) due to their reductive stability. Recent developments in multivalent electrolyte design have produced a variety of new salts for Mg2+ and Ca2+ that test the limits of weak coordination strength and oxidative stability. Such electrolytes have great potential for enabling full-cell cycling of batteries based on these working ions. However, the ion interactions in these electrolytes exhibit significant and non-intuitive concentration relationships. In this work, we investigate a promising exemplar, calcium tetrakis(hexafluoroisopropoxy)borate (Ca(BHFIP)2), in the ethereal solvents 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF) across a concentration range of several orders of magnitude. Surprisingly, we find that effective salt dissociation is lower at relatively dilute concentrations (e.g. 0.01 M) than at higher concentrations (e.g. 0.2 M). Combined experimental and computational dielectric and X-ray spectroscopic analyses of the changes occurring in the Ca2+ solvation environment across these concentration regimes reveals a progressive transition from well-defined solvent-separated ion pairs to de-correlated free ions. This transition in ion correlation results in improvements in both conductivity and calcium cycling stability with increased salt concentration. Comparison with previous findings involving more strongly associating salts highlights the generality of this phenomenon, leading to important insight into controlling ion interactions in ether-based multivalent battery electrolytes.

8.
Nat Comput Sci ; 2(2): 112-122, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177518

RESUMO

Identifying stable speciation in multi-component liquid solutions is fundamentally important to areas from electrochemistry to organic chemistry and biomolecular systems. Here we introduce a fully automated, high-throughput computational framework for the accurate prediction of stable species in liquid solutions by computing the nuclear magnetic resonance (NMR) chemical shifts. The framework automatically extracts and categorizes hundreds of thousands of atomic clusters from classical molecular dynamics simulations, identifies the most stable species in solution and calculates their NMR chemical shifts via density functional theory calculations. Additionally, the framework creates a database of computed chemical shifts for liquid solutions across a wide chemical and parameter space. We compare our computational results to experimental measurements for magnesium bis(trifluoromethanesulfonyl)imide Mg(TFSI)2 salt in dimethoxyethane solvent. Our analysis of the Mg2+ solvation structural evolutions reveals key factors that influence the accuracy of NMR chemical shift predictions in liquid solutions. Furthermore, we show how the framework reduces the performance of over 300 13C and 600 1H density functional theory chemical shift predictions to a single submission procedure.

9.
J Phys Chem B ; 125(45): 12574-12583, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748339

RESUMO

The diffusion behavior of Mg2+ in electrolytes is not as readily accessible as that from Li+ or Na+ utilizing PFG NMR, due to the low sensitivity, poor resolution, and rapid relaxation encountered when attempting 25Mg NMR. In MgTFSI2/DME solutions, "bound" DME (coordinating to Mg2+) and "free" DME (bulk) are distinguishable from 1H NMR. With the exchange rates between them obtained from 2D 1H EXSY NMR, we can extract the self-diffusivities of free DME and bound DME (which are equal to that of Mg2+) before the exchange occurs using PFG diffusion NMR measurements coupled with analytical formulas describing diffusion under two-site exchange. The high activation enthalpy for exhange (65-70 kJ/mol) can be explained by the structural change of bound DME as evidenced by its reduced C-H bond length. Comparison of the diffusion behaviors of Mg2+, TFSI-, DME, and Li+ reveals a relative restriction to Mg2+ diffusion that is caused by the long-range interaction between Mg2+ and solvent molecules, especially those with suppressed motions at high concentrations and low temperatures.


Assuntos
Eletrólitos , Etil-Éteres , Difusão , Solventes
10.
J Phys Chem B ; 125(19): 5089-5099, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33970627

RESUMO

Sulfuric acid is a ubiquitous compound for industrial processes, and aqueous sulfate solutions also play a critical role as electrolytes for many prominent battery chemistries. While the thermodynamic literature on it is quite well-developed, comprehensive studies of the solvation structure, particularly molecular-scale dynamical and transport properties, are less available. This study applies a multinuclear nuclear magnetic resonance (NMR) approach to the elucidation of the solvation structure and dynamics over wide temperature (-10 to 50 °C) and concentration (0-18 M) ranges, combining the 17O shift, line width, and T1 relaxation measurements, 33S shift and line width measurements, and 1H pulsed-field gradient NMR measurements of proton self-diffusivity. In conjunction, these results indicate a crossover between two regimes of solvation structure and dynamics, occurring above the concentration associated with the deep eutectic point (∼4.5 M), with the high-concentration regime dominated by a strong water-sulfate correlation. This description was borne out in detail by the activation energy trends with increasing concentration derived from the relaxation of both the H2O/H3O+ and H2SO4/HSO4-/SO42- 17O resonances and the 1H self-diffusivity. However, the 17O chemical shift difference between the H2O/H3O+ and H2SO4/HSO4-/SO42- resonances across the entire temperature range is nevertheless strikingly linear. A computational approach coupling molecular dynamics simulations and density functional theory NMR shift calculations to reproduce this trend is presented, which will be the subject of further development. This combination of multinuclear, dynamical NMR, and computational methods, and the results furnished by this study, will provide a platform for future studies on battery electrolytes where aqueous sulfate chemistry plays a central role in the solution structure.

11.
J Phys Chem B ; 125(14): 3644-3652, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33797900

RESUMO

Multivalent batteries represent an important beyond Li-ion energy storage concept. The prospect of calcium batteries, in particular, has emerged recently due to novel electrolyte demonstrations, especially that of a ground-breaking combination of the borohydride salt Ca(BH4)2 dissolved in tetrahydrofuran. Recent analysis of magnesium and calcium versions of this electrolyte led to the identification of divergent speciation pathways for Mg2+ and Ca2+ despite identical anions and solvents, owing to differences in cation size and attendant flexibility of coordination. To test these proposed speciation equilibria and develop a more quantitative understanding thereof, we have applied pulsed-field-gradient nuclear magnetic resonance and dielectric relaxation spectroscopy to study these electrolytes. Concentration-dependent variation in anion diffusivities and solution dipole relaxations, interpreted with the aid of molecular dynamics simulations, confirms these divergent Mg2+ and Ca2+ speciation pathways. These results provide a more quantitative description of the electroactive species populations. We find that these species are present in relatively small quantities, even in the highly active Ca(BH4)2/tetrahydrofuran electrolyte. This finding helps interpret previous characterizations of metal deposition efficiency and morphology control and thus provides important fundamental insight into the dynamic properties of multivalent electrolytes for next-generation batteries.

12.
Nature ; 592(7853): 225-231, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828319

RESUMO

Microporous polymers feature shape-persistent free volume elements (FVEs), which are permeated by small molecules and ions when used as membranes for chemical separations, water purification, fuel cells and batteries1-3. Identifying FVEs that have analyte specificity remains a challenge, owing to difficulties in generating polymers with sufficient diversity to enable screening of their properties. Here we describe a diversity-oriented synthetic strategy for microporous polymer membranes to identify candidates featuring FVEs that serve as solvation cages for lithium ions (Li+). This strategy includes diversification of bis(catechol) monomers by Mannich reactions to introduce Li+-coordinating functionality within FVEs, topology-enforcing polymerizations for networking FVEs into different pore architectures, and several on-polymer reactions for diversifying pore geometries and dielectric properties. The most promising candidate membranes featuring ion solvation cages exhibited both higher ionic conductivity and higher cation transference number than control membranes, in which FVEs were aspecific, indicating that conventional bounds for membrane permeability and selectivity for ion transport can be overcome4. These advantages are associated with enhanced Li+ partitioning from the electrolyte when cages are present, higher diffusion barriers for anions within pores, and network-enforced restrictions on Li+ coordination number compared to the bulk electrolyte, which reduces the effective mass of the working ion. Such membranes show promise as anode-stabilizing interlayers in high-voltage lithium metal batteries.

13.
Angew Chem Int Ed Engl ; 60(23): 12999-13006, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33783105

RESUMO

Despite being an effective flame retardant, trimethyl phosphate (TMPa ) is generally considered as an unqualified solvent for fabricating electrolytes used in graphite (Gr)-based lithium-ion batteries as it readily leads to Gr exfoliation and cell failure. In this work, by adopting the unique solvation structure of localized high-concentration electrolyte (LHCE) to TMPa and tuning the composition of the solvation sheaths via electrolyte additives, excellent electrochemical performance can be achieved with TMPa -based electrolytes in Gr∥LiNi0.8 Mn0.1 Co0.1 O2 cells. After 500 charge/discharge cycles within the voltage range of 2.5-4.4 V, the batteries containing the TMPa -based LHCE with a proper additive can achieve a capacity retention of 85.4 %, being significantly higher than cells using a LiPF6 -organocarbonates baseline electrolyte (75.2 %). Meanwhile, due to the flame retarding effect of TMPa , TMPa -based LHCEs exhibit significantly reduced flammability compared with the conventional LiPF6 -organocarbonates electrolyte.

14.
Angew Chem Int Ed Engl ; 60(15): 8258-8267, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33480154

RESUMO

Manganese-rich layered oxide materials hold great potential as low-cost and high-capacity cathodes for Na-ion batteries. However, they usually form a P2 phase and suffer from fast capacity fade. In this work, an O3 phase sodium cathode has been developed out of a Li and Mn-rich layered material by leveraging the creation of transition metal (TM) and oxygen vacancies and the electrochemical exchange of Na and Li. The Mn-rich layered cathode material remains primarily O3 phase during sodiation/desodiation and can have a full sodiation capacity of ca. 220 mAh g-1 . It delivers ca. 160 mAh g-1 specific capacity between 2-3.8 V with >86 % retention over 250 cycles. The TM and oxygen vacancies pre-formed in the sodiated material enables a reversible migration of TMs from the TM layer to the tetrahedral sites in the Na layer upon de-sodiation and sodiation. The migration creates metastable states, leading to increased kinetic barrier that prohibits a complete O3-P3 phase transition.

15.
ACS Appl Mater Interfaces ; 12(49): 54893-54903, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33226769

RESUMO

Lithium-ion batteries (LIBs) with high-nickel (Ni) content LiNixMnyCozO2 (x + y + z = 1) (NMC with Ni ≥ 0.6) cathodes operated at high charge voltages have been considered as one of the most promising candidates for addressing the challenge of increasing energy density demand. Conventional LiPF6-organocarbonate electrolytes exhibit incompatibility with such cell chemistries under certain testing conditions because of the instability of electrode/electrolyte interphases. In response to this challenge, ether-based electrolytes with finely tuned structure and composition of solvation sheaths were developed and evaluated in graphite (Gr)∥NMC811 cell chemistry in 2.5-4.4 V, despite ethers being conventionally considered to be unfavorable electrolyte solvents for LIBs because of their anodic instability above 4.0 V and cointercalation into Gr electrodes. The functional ether-based electrolytes in this work enable both excellent cycle life and high rate capability of Gr∥NMC811 cells. Mechanistic studies reveal that the unique structure and composition of the solvation sheath of the functional ether electrolytes are the main reasons behind their excellent anodic stability and effective protection of the Gr electrode and, consequently, the extraordinary cell performances when operated at high charge cutoff voltages. This work also provides a feasible approach in developing highly stable functional electrolytes for high-energy density LIBs.

16.
Phys Chem Chem Phys ; 22(34): 19009-19021, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32808606

RESUMO

Water-lean CO2 capture solvents show promise for more efficient and cost-effective CO2 capture, although their long-term behavior in operation has yet to be well studied. New observations of extended structure solvent behavior show that some solvent formulations transform into a glass-like phase upon aging at operating temperatures after contact with CO2. The glassification of a solvent would be detrimental to a carbon-capture process due to plugging of infrastructure, introducing a critical need to decipher the underlying principles of this phenomenon to prevent it from happening. We present the first integrated theoretical and experimental study to characterize the nano-structure of metastable and glassy states of an archetypal single-component alkanolguanidine carbon-capture solvent and assess how minute changes in atomic-level interactions convert the solvent between metastable and glass-like states. Small-angle neutron scattering and neutron diffraction coupled with small- and wide-angle X-ray scattering analysis demonstrate that minute structural changes in solution precipitae reversible aggregation of zwitterionic alkylcarbonate clusters in solution. Our findings indicate that our test system, an alkanolguanidine, exhibits a first-order phase transition, similar to a glass transition, at approximately 40 °C-close to the operating absorption temperature for post-combustion CO2 capture processes. We anticipate that these phenomena are not specific to this system, but are present in other classes of colvents as well. We discuss how molecular-level interactions can have vast implications for solvent-based carbon-capture technologies, concluding that fortunately in this case, glassification of water-lean solvents can be avoided as long as the solvent is run above its glass transition temperature.

17.
J Phys Chem Lett ; 11(15): 6443-6449, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32672969

RESUMO

One of the main impediments faced for predicting emergent properties of a multivalent electrolyte (such as conductivity and electrochemical stability) is the lack of quantitative analysis of ion-ion and ion-solvent interactions, which manifest in solvation structures and dynamics. In particular, the role of ion-solvent interactions is still unclear in cases where the strong electric field from multivalent cations can influence intramolecular rotations and conformal structural evolution (i.e., solvent rearrangement process) of low permittivity organic solvent molecules on solvation structure. Using quantitative 1H, 19F, and 17O NMR together with 19F nuclear spin relaxation and diffusion measurments, we find an unusual correlation between ion concentration and solvation structure of Mg(TFSI)2 salt in dimethoxyethane (DME) solution. The dominant solvation structure evolves from contact ion pairs (i.e., [Mg(TFSI)(DME)1-2]+) to fully solvated clusters (i.e., [Mg(DME)3]2+) as salt concentration increases or as temperature decreases. This transition is coupled to a phase separation, which we study here between 0.06 and 0.36 M. Subsequent analysis is based on an explanation of the solvent rearrangement process and the competition between solvent molecules and TFSI anions for cation coordination.

18.
J Phys Chem B ; 124(25): 5284-5291, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32484675

RESUMO

Superconcentrated aqueous electrolytes ("water-in-salt" electrolytes, or WiSEs) enable various aqueous battery chemistries beyond the voltage limits imposed by the Pourbaix diagram of water. However, their detailed structural and transport properties remain unexplored and could be better understood through added studies. Here, we report on our observations of strong acidity (pH 2.4) induced by lithium bis(trifluoromethane sulfonyl)imide (LiTFSI) at superconcentration (at 20 mol/kg). Multiple nuclear magnetic resonance (NMR) and pulsed-field gradient (PFG) diffusion NMR experiments, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations reveal that such acidity originates from the formation of nanometric ion-rich structures. The experimental and simulation results indicate the separation of water-rich and ion-rich domains at salt concentrations ≥5 m and the acidity arising therefrom is due to deprotonation of water molecules in the ion-rich domains. As such, the ion-rich domain is composed of hydrophobic -CF3 (of TFSI-) and hydrophilic hydroxyl (OH-) groups. At 20 m concentration, the tortuosity and radius of water diffusion channels are estimated to be ∼10 and ∼1 nm, respectively, which are close to values obtained from hydrated Nafion membranes that also have hydrophobic polytetrafluoroethylene (PTFE) backbones and hydrophilic channels consisting of SO3- ion cluster networks providing for the transport of ions and water. Thus, we have discovered the structural similarity between WiSE and hydrated Nafion membranes on the nanometer scale.

19.
ACS Omega ; 5(23): 13894-13901, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32566856

RESUMO

Wood and plant fibers have been studied as natural sorbent materials for treating aquatic oil spills; however, the effectiveness of these materials is limited by their tendency to absorb water as well as oil. Chemical pretreatment of cotton fibers with fatty acids was examined as a means of enhancing the performance of cotton as a sorbent for crude oil. A raw cotton fiber was chemically modified with C18 fatty acid by simple leaving group chemistry. Free surface hydroxyl groups were modified with long alkyl chains to create fibers that displayed increased water contact angles, indicative of a significant decrease in surface energy. The increased affinity for oil and corresponding repulsion of water on the individual modified fibers translated to greater sorption of oil and rejection of water by loose assemblies of fibers (i.e., balls or yarn) when compared with unmodified cotton. X-ray diffraction (XRD) pattern, Fourier transform infrared (FT-IR), 13C cross-polarization/magic angle spinning solid-state nuclear magnetic resonance (CP/MAS SSNMR), and scanning electron microscopy (SEM) showed that cotton fibers were significantly exfoliated by the intercalation of C18 fatty acids about 2.4 times in its diameter. In the presence of seawater, the highly oleophilic C18 fatty acid-modified cotton fiber showed a maximum oil sorption capacity of 35.58 g per gram of fiber, about ∼49% greater than that of the corresponding raw cotton fiber.

20.
Chemistry ; 26(55): 12544-12548, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428326

RESUMO

Molecular confinement plays a significant effect on trapped gas and solvent molecules. A fundamental understanding of gas adsorption within the porous confinement provides information necessary to design a material with improved selectivity. In this regard, metal-organic framework (MOF) adsorbents are ideal candidate materials to study confinement effects for weakly interacting gas molecules, such as noble gases. Among the noble gases, xenon (Xe) has practical applications in the medical, automotive and aerospace industries. In this Communication, we report an ultra-microporous nickel-isonicotinate MOF with exceptional Xe uptake and selectivity compared to all benchmark MOF and porous organic cage materials. The selectivity arises because of the near perfect fit of the atomic Xe inside the porous confinement. Notably, at low partial pressure, the Ni-MOF interacts very strongly with Xe compared to the closely related Krypton gas (Kr) and more polarizable CO2 . Further 129 Xe NMR suggests a broad isotropic chemical shift due to the reduced motion as a result of confinement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...